• Title/Summary/Keyword: Myokines

Search Result 8, Processing Time 0.021 seconds

The role of myokines in cancer: crosstalk between skeletal muscle and tumor

  • Se-Young Park;Byeong-Oh Hwang;Na-Young Song
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.365-373
    • /
    • 2023
  • Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscle-to-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer.

The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis

  • Choi, Kyung Mook
    • Endocrinology and Metabolism
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.

Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants

  • Roh, Sang-Gun;Suzuki, Yutaka;Gotoh, Takafumi;Tatsumi, Ryuichi;Katoh, Kazuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.

A systematic review of the biological mechanisms linking physical activity and breast cancer

  • Hong, Bok Sil;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.25-31
    • /
    • 2020
  • [Purpose] Epidemiological evidence has shown that leisure-time physical activity and structured exercise before and after breast cancer diagnosis contribute to reducing the risk of breast cancer recurrence and mortality. Thus, in this review, we aimed to summarize the physical activity-dependent regulation of systemic factors to understand the biological and molecular mechanisms involved in the initiation, progression, and survival of breast cancer. [Methods] We systematically reviewed the studies on 1) the relationship between physical activity and the risk of breast cancer, and 2) various systemic factors induced by physical activity and exercise that are potentially linked to breast cancer outcomes. To perform this literature review, PubMed database was searched using the terms "Physical activity OR exercise" and "breast cancer", until August 5th, 2020; then, we reviewed those articles related to biological mechanisms after examining the resulting search list. [Results] There is strong evidence that physical activity reduces the risk of breast cancer, and the protective effect of physical activity on breast cancer has been achieved by long-term regulation of various circulatory factors, such as sex hormones, metabolic hormones, inflammatory factors, adipokines, and myokines. In addition, physical activity substantially alters wholebody homeostasis by affecting numerous other factors, including plasma metabolites, reactive oxygen species, and microRNAs as well as exosomes and gut microbiota profile, and thereby every cell and organ in the whole body might be ultimately affected by the biological perturbation induced by physical activity and exercise. [Conclusion] The understanding of integrative mechanisms will enhance how physical activity can ultimately influence the risk and prognosis of various cancers, including breast cancer. Furthermore, physical activity could be considered an efficacious non-pharmacological therapy, and the promotion of physical activity is probably an effective strategy in primary cancer prevention.

The role of myokine Irisin on bone metabolism

  • Lee, Jin-Wook;Kim, Chan-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.97-102
    • /
    • 2019
  • Several studies have recently demonstrated that skeletal muscle is an endocrine organ releasing and expressing myokines acting in an endocrine or paracrine manner. Irisin is a hormene-like myokine induced after physical exercise by muscle fibers. It was primarily recognized as a molecule able to advance the "browning response" in white adipose tissue, however, it has been recetly identified that irisin also has a fundamental role in the control of bone mass. We study evidence for its possible skeletal effects, including the fundamental role that irisin is involved in the control of bone mass, with beneficial effects on geometry and cortical mineral density. As loss of muscle mass and bone density occurs with immobility, metabolic disease and aging, future studies researching the efficacy of irisin in reversing muscle wasting and restoring bone would be important to proving irisin as a molecule that combines helpful effects for treating muscular atrophy and osteoporosis in elderly people.

Molecular targets of exercise mimetics and their natural activators

  • Jang, Young Jin;Byun, Sanguine
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.581-591
    • /
    • 2021
  • Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.

Effects of exercise on myokine gene expression in horse skeletal muscles

  • Lee, Hyo Gun;Choi, Jae-Young;Park, Jung-Woong;Park, Tae Sub;Song, Ki-Duk;Shin, Donghyun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.350-356
    • /
    • 2019
  • Objective: To examine the regulatory effects of exercise on myokine expression in horse skeletal muscle cells, we compared the expression of several myokine genes (interleukin 6 [IL-6], IL-8, chemokine [C-X-C motif] ligand 2 [CXCL2], and chemokine [C-C motif] ligand 4 [CCL4]) after a single bout of exercise in horses. Furthermore, to establish in vitro systems for the validation of exercise effects, we cultured horse skeletal muscle cells and confirmed the expression of these genes after treatment with hydrogen peroxide. Methods: The mRNA expression of IL-6, IL-8, CXCL2, and CCL4 after exercise in skeletal muscle tissue was confirmed using quantitative-reverse transcriptase polymerase chain reactions (qRT-PCR). We then extracted horse muscle cells from the skeletal muscle tissue of a neonatal Thoroughbred. Myokine expression after hydrogen peroxide treatments was confirmed using qRT-PCR in horse skeletal muscle cells. Results: IL-6, IL-8, CXCL2, and CCL4 expression in Thoroughbred and Jeju horse skeletal muscles significantly increased after exercise. We stably maintained horse skeletal muscle cells in culture and confirmed the expression of the myogenic marker, myoblast determination protein (MyoD). Moreover, myokine expression was validated using hydrogen peroxide ($H_2O_2$)-treated horse skeletal muscle cells. The patterns of myokine expression in muscle cells were found to be similar to those observed in skeletal muscle tissue. Conclusion: We confirmed that several myokines involved in inflammation were induced by exercise in horse skeletal muscle tissue. In addition, we successfully cultured horse skeletal muscle cells and established an in vitro system to validate associated gene expression and function. This study will provide a valuable system for studying the function of exercise-related genes in the future.

Elderly Sarcopenia and Vitamin B Deficiency: A Relationship? (비타민 B 결핍에 의한 노인성 근감소증)

  • Kisang Kwon;Hye-Jeong Jang;Sun-Nyoung Yu;Soon-Cheol Ahn;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.574-585
    • /
    • 2023
  • Sarcopenia is a leading cause of increased medical and nursing care costs among the elderly. In Korea, preventive measures for sarcopenia are mostly targeted toward the general elderly population without specific diseases. However, it is also necessary to implement measures for elderly individuals living in nursing homes and hospitals, where the prevalence of sarcopenia is high. Currently, computed tomography and/or magnetic resonance imaging are considered standard diagnostic tools. However, their complexity and time-consuming nature make them unsuitable for clinical use. The exact pathophysiological mechanisms of sarcopenia are unclear, as they involve various molecular biological pathways, including decreased exercise, protein and nutrient intake, changes in testosterone and growth hormone, and inflammation. Sarcopenia symptoms can lead to several diseases, such as osteoporosis, fractures, dementia, diabetes, and cardiovascular disease. Vitamin B deficiency is a significant factor in sarcopenia induction, with B vitamins being directly involved in energy and protein metabolism and nerve function. Vitamin B deficiency can lead to neuromuscular and neurogenic disorders, which often overlap with sarcopenia. Suboptimal intake of B vitamins, malabsorption, and anorexia are common among the elderly. This study aims to provide information on the role of water-soluble B vitamins in preventing and controlling muscle mass loss and deterioration among the elderly with sarcopenia. In addition, we discuss the potential of myokines from the B vitamin family in modulating sarcopenia.