Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.12.151

Molecular targets of exercise mimetics and their natural activators  

Jang, Young Jin (Major of Food Science & Technology, Seoul Women's University)
Byun, Sanguine (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Publication Information
BMB Reports / v.54, no.12, 2021 , pp. 581-591 More about this Journal
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Keywords
Exercise mimetics; Molecular targets; Myokines; Natural products;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Febbraio MA, Hiscock N, Sacchetti M, Fischer CP and Pedersen BK (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53, 1643-1648   DOI
2 Li L, Wang Y, Yuan J, Liu Z, Ye C and Qin S (2020) Undaria pinnatifida improves obesity-related outcomes in association with gut microbiota and metabolomics modulation in high-fat diet-fed mice. Appl Microbiol Biotechnol 104, 10217-10231   DOI
3 Maqueshudul Haque Bhuiyan M, Mohibbullah M, Hannan MA et al (2015) Undaria pinnatifida promotes spinogenesis and synaptogenesis and potentiates functional presynaptic plasticity in hippocampal neurons. Am J Chin Med 43, 529-542   DOI
4 Oh JH, Kim J and Lee Y (2016) Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr Res Pract 10, 42-48   DOI
5 De Mattei L, Francisqueti-Ferron FV, Garcia JL et al (2021) Antioxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol Cell Endocrinol 537, 111423   DOI
6 Wang L, Lin Q, Yang T et al (2017) Oryzanol modifies high fat diet-induced obesity, liver gene expression profile, and inflammation response in mice. J Agric Food Chem 65, 8374-8385   DOI
7 Eslami S, Esa NM, Marandi SM, Ghasemi G and Eslami S (2014) Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J Med Res 139, 857-863
8 Choi WH, Son HJ, Jang YJ, Ahn J, Jung CH and Ha TY (2017) Apigenin ameliorates the obesity-induced skeletal muscle atrophy by attenuating mitochondrial dysfunction in the muscle of obese mice. Mol Nutr Food Res 61, 1700218   DOI
9 Han HS, Lee HH, Gil HS et al (2021) Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food Funct 12, 2672-2685   DOI
10 Chen L, Xie W, Xie W, Zhuang W, Jiang C and Liu N (2017) Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch Gerontol Geriatr 73, 29-36   DOI
11 Zhang H, Chi M, Chen L et al (2021) Daidzein alleviates cisplatin-induced muscle atrophy by regulating Glut4/AMPK/FoxO pathway. Phytother Res 35, 4363-4376   DOI
12 Tan J, Huang C, Luo Q et al (2019) Soy isoflavones ameliorate fatty acid metabolism of visceral adipose tissue by increasing the AMPK activity in male rats with diet-induced obesity (DIO). Molecules 24, 2809   DOI
13 Ahn J, Kim MJ, Yoo A et al (2021) Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance. Food Chem 353, 129463   DOI
14 Oliver WR Jr, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 98, 5306-5311   DOI
15 Araujo SM, Bortolotto VC, Poetini MR et al (2021) Gamma-oryzanol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in Drosophila melanogaster. Stress 24, 282-293   DOI
16 Malaguarnera L (2019) Influence of resveratrol on the immune response. Nutrients 11, 946   DOI
17 Reilly SM and Lee CH (2008) PPAR delta as a therapeutic target in metabolic disease. FEBS Lett 582, 26-31   DOI
18 Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10, 1245-1250   DOI
19 Fan W, He N, Lin CS et al (2018) ERRgamma promotes angiogenesis, mitochondrial biogenesis, and oxidative remodeling in PGC1alpha/beta-deficient muscle. Cell Rep 22, 2521-2529   DOI
20 Narkar VA, Fan W, Downes M et al (2011) Exercise and PGC-1alpha-independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab 13, 283-293   DOI
21 Fang EF, Waltz TB, Kassahun H et al (2017) Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 7, 46208   DOI
22 Rahvar M, Owji AA and Mashayekhi FJ (2018) Effect of quercetin on the brain-derived neurotrophic factor gene expression in the rat brain. Bratisl Lek Listy 119, 28-31
23 Dyle MC, Ebert SM, Cook DP et al (2014) Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. J Biol Chem 289, 14913-14924   DOI
24 Wu SJ, Huang WC, Yu MC et al (2021) Tomatidine ameliorates obesity-induced nonalcoholic fatty liver disease in mice. J Nutr Biochem 91, 108602   DOI
25 Ahn J, Son HJ, Seo HD et al (2021) Gamma-oryzanol improves exercise endurance and muscle strength by upregulating PPARdelta and ERRgamma activity in aged mice. Mol Nutr Food Res 65, e2000652
26 Kuo CY, Huang WC, Liou CJ, Chen LC, Shen JJ and Kuo ML (2017) Tomatidine attenuates airway hyperresponsiveness and inflammation by suppressing Th2 cytokines in a mouse model of asthma. Mediators Inflamm 2017, 5261803   DOI
27 Sakamoto Y, Naka A, Ohara N, Kondo K and Iida K (2014) Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARgamma. Mol Nutr Food Res 58, 718-726   DOI
28 Rungratanawanich W, Cenini G, Mastinu A et al (2019) Gamma-oryzanol improves cognitive function and modulates hippocampal proteome in mice. Nutrients 11, 753   DOI
29 Rangwala SM, Wang X, Calvo JA et al (2010) Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. J Biol Chem 285, 22619-22629   DOI
30 Egan B and Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17, 162-184   DOI
31 Ahmed T, Javed S, Tariq A et al (2017) Daidzein and its effects on brain. Curr Med Chem 24, 365-375   DOI
32 Kim DK, Jeong JH, Lee JM et al (2014) Inverse agonist of estrogen-related receptor gamma controls Salmonella typhimurium infection by modulating host iron homeostasis. Nat Med 20, 419-424   DOI
33 Matsakas A, Yadav V, Lorca S and Narkar V (2013) Muscle ERRgamma mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J 27, 4004-4016   DOI
34 Kim DK, Kim JR, Koh M et al (2011) Estrogen-related receptor gamma (ERRgamma) is a novel transcriptional regulator of phosphatidic acid phosphatase, LIPIN1, and inhibits hepatic insulin signaling. J Biol Chem 286, 38035-38042   DOI
35 Kim DK, Kim YH, Jang HH et al (2013) Estrogen-related receptor gamma controls hepatic CB1 receptor-mediated CYP2E1 expression and oxidative liver injury by alcohol. Gut 62, 1044-1054   DOI
36 Shin EJ, Lee JS, Hong S, Lim TG and Byun S (2019) Quercetin directly targets JAK2 and PKCdelta and prevents UV-induced photoaging in human skin. Int J Mol Sci 20, 5262   DOI
37 Jiang Q, Cheng X, Cui Y et al (2019) Resveratrol regulates skeletal muscle fibers switching through the AdipoR1-AMPK-PGC-1alpha pathway. Food Funct 10, 3334-3343   DOI
38 Wicinski M, Malinowski B, Weclewicz MM, Grzesk E and Grzesk G (2017) Resveratrol increases serum BDNF concentrations and reduces vascular smooth muscle cells contractility via a NOS-3-independent mechanism. Biomed Res Int 2017, 9202954   DOI
39 Bandy WD, Lovelace-Chandler V and McKitrick-Bandy B (1990) Adaptation of skeletal muscle to resistance training. J Orthop Sports Phys Ther 12, 248-255   DOI
40 Hughes DC, Ellefsen S and Baar K (2018) Adaptations to endurance and strength training. Cold Spring Harb Perspect Med 8, a029769   DOI
41 Li S and Laher I (2017) Exercise mimetics: running without a road map. Clin Pharmacol Ther 101, 188-190   DOI
42 Carey AL and Kingwell BA (2009) Novel pharmacological approaches to combat obesity and insulin resistance: targeting skeletal muscle with 'exercise mimetics'. Diabetologia 52, 2015-2026   DOI
43 Lee JH and Jun HS (2019) Role of myokines in regulating skeletal muscle mass and function. Front Physiol 10, 42   DOI
44 Liu L, Guo J, Chen X, Tong X, Xu J and Zou J (2021) The role of irisin in exercise-mediated bone health. Front Cell Dev Biol 9, 668759   DOI
45 Lira VA, Benton CR, Yan Z and Bonen A (2010) PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 299, E145-E161   DOI
46 Reza MM, Subramaniyam N, Sim CM et al (2017) Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat Commun 8, 1104   DOI
47 Bang HS, Seo DY, Chung YM et al (2014) Ursolic Acid-induced elevation of serum irisin augments muscle strength during resistance training in men. Korean J Physiol Pharmacol 18, 441-446   DOI
48 Seo DY, Lee SR, Heo JW et al (2018) Ursolic acid in health and disease. Korean J Physiol Pharmacol 22, 235-248   DOI
49 Jang YJ, Son HJ, Choi YM, Ahn J, Jung CH and Ha TY (2017) Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7. Oncotarget 8, 78300-78311   DOI
50 Byun S, Lim S, Mun JY et al (2015) Identification of a dual inhibitor of janus kinase 2 (JAK2) and p70 ribosomal S6 kinase1 (S6K1) pathways. J Biol Chem 290, 23553-23562   DOI
51 Zhao Y, Chen B, Shen J et al (2017) The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid Med Cell Longev 2017, 1459497   DOI
52 Kolsi RBA, Jardak N, Hajkacem F et al (2017) Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int J Biol Macromol 102, 119-129   DOI
53 Islam MR, Valaris S, Young MF et al (2021) Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab 3, 1058-1070   DOI
54 Mazur-Bialy AI, Bilski J, Pochec E and Brzozowski T (2017) New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. J Physiol Pharmacol 68, 243-251
55 Otero-Diaz B, Rodriguez-Flores M, Sanchez-Munoz V et al (2018) Exercise induces white adipose tissue browning across the weight spectrum in humans. Front Physiol 9, 1781   DOI
56 Wrann CD, White JP, Salogiannnis J et al (2013) Exercise induces hippocampal BDNF through a PGC-1alpha/ FNDC5 pathway. Cell Metab 18, 649-659   DOI
57 Gomez-Pinilla F, Ying Z, Roy RR, Molteni R and Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88, 2187-2195   DOI
58 Soya H, Nakamura T, Deocaris CC et al (2007) BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun 358, 961-967   DOI
59 Bishop-Bailey D (2013) Mechanisms governing the health and performance benefits of exercise. Br J Pharmacol 170, 1153-1166   DOI
60 Braissant O, Foufelle F, Scotto C, Dauca M and Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPARalpha, -beta, and -gamma in the adult rat. Endocrinology 137, 354-366   DOI
61 Pedersen BK and Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88, 1379-1406   DOI
62 So B, Kim HJ, Kim J and Song W (2014) Exercise-induced myokines in health and metabolic diseases. Integr Med Res 3, 172-179   DOI
63 Motamedi S, Karimi I and Jafari F (2017) The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): kill two birds with one stone. Metab Brain Dis 32, 651-665   DOI
64 Pedersen BK, Steensberg A, Fischer C et al (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24, 113-119   DOI
65 Fan W, Atkins AR, Yu RT, Downes M and Evans RM (2013) Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. J Mol Endocrinol 51, T87-T100
66 Hartwig S, Raschke S, Knebel B et al (2014) Secretome profiling of primary human skeletal muscle cells. Biochim Biophys Acta 1844, 1011-1017   DOI
67 Salehi B, Venditti A, Sharifi-Rad M et al (2019) The therapeutic potential of apigenin. Int J Mol Sci 20, 1305   DOI
68 Jang YJ, Ahn J, Son HJ, Jung CH, Ahn J and Ha TY (2019) Hydrangea serrata tea enhances running endurance and skeletal muscle mass. Mol Nutr Food Res 63, e1801149
69 Kunkel SD, Suneja M, Ebert SM et al (2011) mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 13, 627-638   DOI
70 Choi WH, Jang YJ, Son HJ, Ahn J, Jung CH and Ha TY (2018) Apigenin inhibits sciatic nerve denervation-induced muscle atrophy. Muscle Nerve 58, 314-318   DOI
71 Liu X, Suzuki N, Santosh Laxmi YR, Okamoto Y and Shibutani S (2012) Anti-breast cancer potential of daidzein in rodents. Life Sci 91, 415-419   DOI
72 Le NH, Kim CS, Park T et al (2014) Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm 2014, 834294   DOI
73 Anhe GF, Okamoto MM, Kinote A et al (2012) Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes. Eur J Pharmacol 689, 285-293   DOI
74 Ghafouri-Fard S, Shabestari FA, Vaezi S et al (2021) Emerging impact of quercetin in the treatment of prostate cancer. Biomed Pharmacother 138, 111548   DOI
75 Mercken EM, Carboneau BA, Krzysik-Walker SM and de Cabo R (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11, 390-398   DOI
76 Greene NP, Fluckey JD, Lambert BS, Greene ES, Riechman SE and Crouse SF (2012) Regulators of blood lipids and lipoproteins? PPARdelta and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. Am J Physiol Endocrinol Metab 303, E1212-E1221   DOI
77 Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 100, 15924-15929   DOI
78 Badin PM, Vila IK, Sopariwala DH et al (2016) Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice. Sci Rep 6, 26442   DOI
79 Fujii N, Seifert MM, Kane EM et al (2007) Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle -insight from analysis of a transgenic mouse model. Diabetes Res Clin Pract 77 Suppl 1, S92-S98   DOI
80 He W, Wang P, Chen Q and Li C (2020) Exercise enhances mitochondrial fission and mitophagy to improve myopathy following critical limb ischemia in elderly mice via the PGC1a/FNDC5/irisin pathway. Skelet Muscle 10, 25   DOI
81 Guerrieri D, Moon HY and van Praag H (2017) Exercise in a pill: the latest on exercise-mimetics. Brain Plast 2, 153-169   DOI
82 Kobilo T, Yuan C and van Praag H (2011) Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem 18, 103-107   DOI
83 Guerrieri D and van Praag H (2015) Exercise-mimetic AICAR transiently benefits brain function. Oncotarget 6, 18293-18313   DOI
84 Zizola C, Kennel PJ, Akashi H et al (2015) Activation of PPARdelta signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol 308, H1078-H1085   DOI
85 Castillo-Quan JI (2012) From white to brown fat through the PGC-1alpha-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 5, 293-295   DOI
86 Chen N, Li Q, Liu J and Jia S (2016) Irisin, an exercise-induced myokine as a metabolic regulator: an updated narrative review. Diabetes Metab Res Rev 32, 51-59   DOI
87 Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463-468   DOI
88 Korta P, Pochec E and Mazur-Bialy A (2019) Irisin as a multifunctional protein: implications for health and certain diseases. Medicina (Kaunas) 55, 485   DOI
89 Nilsson J, Ekblom O, Ekblom M et al (2020) Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci Rep 10, 4395   DOI
90 Hawley JA, Joyner MJ and Green DJ (2021) Mimicking exercise: what matters most and where to next? J Physiol 599, 791-802   DOI
91 Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH et al (2019) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab 29, 844-855 e843   DOI
92 Zhang Z, Wang B and Fei A (2019) BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1alpha signaling in heart failure mice. Arch Med Sci 15, 214-222   DOI
93 Munoz-Canoves P, Scheele C, Pedersen BK and Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280, 4131-4148   DOI
94 Pedersen BK and Fischer CP (2007) Beneficial health effects of exercise--the role of IL-6 as a myokine. Trends Pharmacol Sci 28, 152-156   DOI
95 Bowen KK, Dempsey RJ and Vemuganti R (2011) Adult interleukin-6 knockout mice show compromised neurogenesis. Neuroreport 22, 126-130   DOI
96 Richter EA and Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418, 261-275   DOI
97 Narkar VA, Downes M, Yu RT et al (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405-415   DOI
98 Buhl ES, Jessen N, Pold R et al (2002) Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51, 2199-2206   DOI
99 Kirchner J, Brune B and Namgaladze D (2018) AICAR inhibits NFkappaB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages. Sci Rep 8, 7801   DOI
100 Geng L, Liu Z, Wang S et al (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10, 770-775   DOI
101 Davis JM, Murphy EA, Carmichael MD and Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296, R1071-R1077   DOI
102 Matsakas A, Macharia R, Otto A et al (2012) Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Exp Physiol 97, 125-140   DOI
103 Yu T, Chang Y, Gao XL, Li H and Zhao P (2017) Dynamic expression and the role of BDNF in exercise-induced skeletal muscle regeneration. Int J Sports Med 38, 959-966   DOI
104 Daneshvar P, Hariri M, Ghiasvand R et al (2013) Effect of eight weeks of quercetin supplementation on exercise performance, muscle damage and body muscle in male badminton players. Int J Prev Med 4, S53-S57
105 Kim TI, Kim YJ and Kim K (2021) Extract of seaweed Codium fragile inhibits integrin alphaIIbbeta3-induced outside-in signaling and arterial thrombosis. Front Pharmacol 12, 685948   DOI
106 Yang Y, Lim J, Li C, Lee S and Hong S (2021) Effects of sulfated polysaccharides isolated from Codium fragile on inflammatory cytokine gene expression and Edwardsiella tarda infection in rockfish, Sebastes schlegelii. Fish Shellfish Immunol 112, 125-134   DOI
107 Monmai C, Rod-In W, Jang AY et al (2020) Immune-enhancing effects of anionic macromolecules extracted from Codium fragile coupled with arachidonic acid in RAW264.7 cells. PLoS One 15, e0239422   DOI
108 Wang D, Yang Y, Zou X, Zhang J, Zheng Z and Wang Z (2020) Antioxidant apigenin relieves age-related muscle atrophy by inhibiting oxidative stress and hyperactive mitophagy and apoptosis in skeletal muscle of mice. J Gerontol A Biol Sci Med Sci 75, 2081-2088   DOI
109 Das D, Sarkar S, Bordoloi J, Wann SB, Kalita J and Manna P (2018) Daidzein, its effects on impaired glucose and lipid metabolism and vascular inflammation associated with type 2 diabetes. Biofactors 44, 407-417   DOI
110 Ogawa M, Kitano T, Kawata N et al (2017) Daidzein down-regulates ubiquitin-specific protease 19 expression through estrogen receptor beta and increases skeletal muscle mass in young female mice. J Nutr Biochem 49, 63-70   DOI
111 Park HB, Hwang J, Zhang W et al (2020) Polysaccharide from Codium fragile induces anti-cancer immunity by activating natural killer cells. Mar Drugs 18, 626   DOI
112 Otsuka Y, Egawa K, Kanzaki N, Izumo T, Rogi T and Shibata H (2019) Quercetin glycosides prevent dexamethasone-induced muscle atrophy in mice. Biochem Biophys Rep 18, 100618
113 Kanzaki N, Takemoto D, Ono Y et al (2019) Quercetin glycosides improve motor performance and muscle weight in adult mice. J Nutr Food Sci 9, 760
114 Dajas F, Abin-Carriquiry JA, Arredondo F et al (2015) Quercetin in brain diseases: Potential and limits. Neurochem Int 89, 140-148   DOI
115 Etman SM, Mehanna RA, Bary AA, Elnaggar YSR and Abdallah OY (2021) Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int J Biol Macromol 170, 284-297   DOI
116 Myung DB, Han HS, Shin JS et al (2019) Hydrangenol isolated from the leaves of hydrangea serrata attenuates wrinkle formation and repairs skin moisture in uvbirradiated hairless mice. Nutrients 11, 2354   DOI
117 Liu PZ and Nusslock R (2018) Exercise-mediated neurogenesis in the Hippocampus via BDNF. Front Neurosci 12, 52   DOI
118 Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M and Holloszy JO (2000) Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol (1985) 88, 2219-2226   DOI
119 Lee HH, Cho Y, Kim GH and Cho H (2020) Undaria pinnatifida fucoidan-rich extract recovers immunity of immunosuppressed mice. J Microbiol Biotechnol 30, 439-447   DOI
120 Shin SY, Kim HW, Jang HH et al (2017) Gamma-oryzanolrich black rice bran extract enhances the innate immune response. J Med Food 20, 855-863   DOI
121 Fan W and Evans RM (2017) Exercise mimetics: impact on health and performance. Cell Metab 25, 242-247   DOI
122 Kobilo T, Guerrieri D, Zhang Y, Collica SC, Becker KG and van Praag H (2014) AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learn Mem 21, 119-126   DOI
123 Gubert C and Hannan AJ (2021) Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 20, 862-879   DOI
124 Ernst C, Olson AK, Pinel JP, Lam RW and Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31, 84-92
125 Wang M, Baker JS, Quan W, Shen S, Fekete G and Gu Y (2020) A preventive role of exercise across the Coronavirus 2 (SARS-CoV-2) pandemic. Front Physiol 11, 572718   DOI
126 Ahn J, Ha TY, Ahn J et al (2020) Undaria pinnatifida extract feeding increases exercise endurance and skeletal muscle mass by promoting oxidative muscle remodeling in mice. FASEB J 34, 8068-8081   DOI
127 Carey AL, Steinberg GR, Macaulay SL et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688-2697   DOI
128 O'Gorman DJ, Karlsson HK, McQuaid S et al (2006) Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49, 2983-2992   DOI
129 Fan W, Waizenegger W, Lin CS et al (2017) PPARdelta promotes running endurance by preserving glucose. Cell Metab 25, 1186-1193 e1184   DOI
130 Warburton DE, Nicol CW and Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174, 801-809   DOI