• Title/Summary/Keyword: Myocytes

Search Result 180, Processing Time 0.022 seconds

A Novel Nicotinamide Adenine Dinucleotide Correction Method for Mitochondrial Ca2+ Measurement with FURA-2-FF in Single Permeabilized Ventricular Myocytes of Rat

  • Lee, Jeong Hoon;Ha, Jeong Mi;Leem, Chae Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.373-382
    • /
    • 2015
  • Fura-2 analogs are ratiometric fluoroprobes that are widely used for the quantitative measurement of [$Ca^{2+}$]. However, the dye usage is intrinsically limited, as the dyes require ultraviolet (UV) excitation, which can also generate great interference, mainly from nicotinamide adenine dinucleotide (NADH) autofluorescence. Specifically, this limitation causes serious problems for the quantitative measurement of mitochondrial [$Ca^{2+}$], as no available ratiometric dyes are excited in the visible range. Thus, NADH interference cannot be avoided during quantitative measurement of [$Ca^{2+}$] because the majority of NADH is located in the mitochondria. The emission intensity ratio of two different excitation wavelengths must be constant when the fluorescent dye concentration is the same. In accordance with this principle, we developed a novel online method that corrected NADH and Fura-2-FF interference. We simultaneously measured multiple parameters, including NADH, [$Ca^{2+}$], and pH/mitochondrial membrane potential; Fura-2-FF for mitochondrial [$Ca^{2+}$] and TMRE for ${\Psi}_m$ or carboxy-SNARF-1 for pH were used. With this novel method, we found that the resting mitochondrial [$Ca^{2+}$] concentration was $1.03{\mu}M$. This $1{\mu}M$ cytosolic $Ca^{2+}$ could theoretically increase to more than 100 mM in mitochondria. However, the mitochondrial [$Ca^{2+}$] increase was limited to ${\sim}30{\mu}M$ in the presence of $1{\mu}M$ cytosolic $Ca^{2+}$. Our method solved the problem of NADH signal contamination during the use of Fura-2 analogs, and therefore the method may be useful when NADH interference is expected.

Protective Effect of KR-31378 on Oxidative Stress in Cardiac Myocytes

  • Kim Mi-Young;Lee Sunkyung;Yi Kyu Yang;Yoo Sung Eun;Lee Dong-Ha;Lim Hong;Kim Ho Soon;Lee Soo Hwan;Baik Eun Joo;Moon Chang-Hyun;Jung Yi-Sook
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1358-1364
    • /
    • 2005
  • In this study, we investigated whether a novel anti-ischemic $K_{ATP}$ opener KR-31378 [(2S,3S,4R)­N'-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2 -methly-2-dimethoxymethly-2H-benzopyran-4-yl)­N'-benzylguanidine] has protective effect against oxidative stress-induced death in heart-derived H9c2 cells. Cell death was induced by BSO, butionine sulfoximine, which inhibits GSH synthesis and subsequently increases reactive oxygen species (ROS) level. Cell death was quantitatively determined by measuring lactate dehydrogenase (LDH) activity and stained by Hoechst 33258. BSO-induced ROS production and mitochondrial membrane potential (MMP) were measured using 2',7'-dichlorofluorescein diacetate oxidation and rhodamine 123, respectively. Both the LDH release and the ROS elevation induced by treatment of H9c2 cells with 10 mM BSO, were significantly decreased by KR-31378. These protective effect and antioxidant effect of KR-31378 appeared to be independent on $K_{ATP}$ channel opening. Cells exposed to BSO showed an early reduction in MMP, and this reduction in MMP was significantly reversed by treatment with KR-31378. Caspase-3 activity in BSO treated H9c2 cells was remarkably increased, and this increased caspase-3 activity was significantly reversed by KR-31378. In conclusion, our results suggest that KR-31378 can produce cardioprotective effect against oxidative stress-induced cell death through antioxidant mechanism.

Estrogen modulates serotonin effects on vasoconstriction through Src inhibition

  • Kim, Jae Gon;Leem, Young-Eun;Kwon, Ilmin;Kang, Jong-Sun;Bae, Young Min;Cho, Hana
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.11.1-11.9
    • /
    • 2018
  • Estrogen has diverse effects on cardiovascular function, including regulation of the contractile response to vasoactive substances such as serotonin. The serotonin system recently emerged as an important player in the regulation of vascular tone in humans. However, hyperreactivity to serotonin appears to be a critical factor for the pathophysiology of hypertension. In this study, we examined the modulatory mechanisms of estrogen in serotonin-induced vasoconstriction by using a combinatory approach of isometric tension measurements, molecular biology, and patch-clamp techniques. $17{\beta}$-Estradiol (E2) elicited a significant and concentration-dependent relaxation of serotonin-induced contraction in deendothelialized aortic strips isolated from male rats. E2 triggered a relaxation of serotonin-induced contraction even in the presence of tamoxifen, an estrogen receptor antagonist, suggesting that E2-induced changes are not mediated by estrogen receptor. Patch-clamp studies in rat arterial myocytes showed that E2 prevented Kv channel inhibition induced by serotonin. Serotonin increased Src activation in arterial smooth muscle required for contraction, which was significantly inhibited by E2. The estrogen receptor-independent inhibition of Src by E2 was confirmed in HEK293T cells that do not express estrogen receptor. Taken together, these results suggest that estrogen exerts vasodilatory effects on serotonin-precontracted arteries via Src, implying a critical role for estrogen in the prevention of vascular hyperreactivity to serotonin.

Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM) (미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징)

  • Suh, Jung-Soo;Jang, Yoon-Kwan;Kim, Tae-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439

  • Lee, Hyang-Ae;Kwon, Miso;Kim, Hyeon-A;Kim, Ki-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.393-402
    • /
    • 2019
  • Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with $IC_{50}$ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect $I_{Na}$, $I_{Ks}$ or $I_{K1}$, but decreased $I_{hERG}$ in a dose-dependent manner ($IC_{50}$: $6.53{\mu}M$). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to $3{\mu}M$, but it at $10{\mu}M$ induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

Effect of Transcutaneous High Frequency Wave on the Change of Tissue Temperature and Histology in Sprague-Dawley Rat (백서에서 경피적 고주파 자극에 따른 온도 변화 및 조직 변화)

  • Kim, Kyung Ah;Moon, Chang Won;Song, Da-Hyun;Kim, Sang Jun
    • Clinical Pain
    • /
    • v.15 no.2
    • /
    • pp.92-96
    • /
    • 2016
  • Objective: High frequency wave has been used in cancer treatment and cosmetic area but not in musculoskeletal pain yet. The purpose of this study is to evaluate temperature distribution according to depth and confirm safety of high frequency wave through animal study. Method: High frequency wave was applied to the posterior limb of 9 Sprague-Dawley rats for 20 minutes (experimental group) and no wave was used in the same number of rats for control group. Tissue temperature was measured from skin surface to 1 cm depth (surface, 1 mm, 5 mm, and 1 cm) for 5 seconds. Results: In the experimental group, temperature was elevated 3.2℃ at skin surface, 2.87℃ at 1 mm, 2.25℃ in 5 mm, and 1.74℃ in 1 cm depth. These were significantly different from those in the control group (p<0.001). There was no bulla or redness in the skin after high frequency wave stimulation and neither change of myocytes nor collagen degeneration was found in the tissue histology. There was no apoptosis in the skin surface and muscle layer in TUNEL assay. Conclusion: High frequency wave elevated tissue temperature from the skin to muscle layer without both histologic change and apoptosis.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

The Role of Cardiac MRI in the Diagnosis of Fabry Disease (파브리병에서의 심장 자기공명영상의 역할)

  • Yoo Jin Hong;Young Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.302-309
    • /
    • 2020
  • Fabry disease is a rare X-linked metabolic disorder that is characterized by the accumulation of glycosphingolipids in various organs, resulting from the deficiency of alpha-galactosidase A. Cardiac involvement is relatively common; myocardial inflammation, left ventricular hypertrophy, and myocardial fibrosis secondary to abnormal lipid deposition in myocytes are often observed. Hence, the diagnosis of cardiac involvement is crucial for evaluating patient prognosis. Cardiac MRI is the standard technique for measuring the function, volume, and mass of the ventricles. It is also useful for myocardial tissue characterizations. The evaluation of native myocardial T1 values can facilitate early diagnosis of cardiac involvement, while measurements of left ventricular myocardial mass can be used to monitor treatment outcomes, in patients with Fabry disease. Consequently, cardiac MRI can provide useful information for diagnosing, monitoring, and treating patients with Fabry disease.

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats

  • Qi Yang;Ting Yang;Xing Liu;Shengquan Liu;Wei Liu;Liangui Nie;Chun Chu;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.