Browse > Article
http://dx.doi.org/10.4196/kjpp.2015.19.4.373

A Novel Nicotinamide Adenine Dinucleotide Correction Method for Mitochondrial Ca2+ Measurement with FURA-2-FF in Single Permeabilized Ventricular Myocytes of Rat  

Lee, Jeong Hoon (Department of Physiology, University of Ulsan College of Medicine/Asan Medical Center)
Ha, Jeong Mi (Department of Physiology, University of Ulsan College of Medicine/Asan Medical Center)
Leem, Chae Hun (Department of Physiology, University of Ulsan College of Medicine/Asan Medical Center)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.19, no.4, 2015 , pp. 373-382 More about this Journal
Abstract
Fura-2 analogs are ratiometric fluoroprobes that are widely used for the quantitative measurement of [$Ca^{2+}$]. However, the dye usage is intrinsically limited, as the dyes require ultraviolet (UV) excitation, which can also generate great interference, mainly from nicotinamide adenine dinucleotide (NADH) autofluorescence. Specifically, this limitation causes serious problems for the quantitative measurement of mitochondrial [$Ca^{2+}$], as no available ratiometric dyes are excited in the visible range. Thus, NADH interference cannot be avoided during quantitative measurement of [$Ca^{2+}$] because the majority of NADH is located in the mitochondria. The emission intensity ratio of two different excitation wavelengths must be constant when the fluorescent dye concentration is the same. In accordance with this principle, we developed a novel online method that corrected NADH and Fura-2-FF interference. We simultaneously measured multiple parameters, including NADH, [$Ca^{2+}$], and pH/mitochondrial membrane potential; Fura-2-FF for mitochondrial [$Ca^{2+}$] and TMRE for ${\Psi}_m$ or carboxy-SNARF-1 for pH were used. With this novel method, we found that the resting mitochondrial [$Ca^{2+}$] concentration was $1.03{\mu}M$. This $1{\mu}M$ cytosolic $Ca^{2+}$ could theoretically increase to more than 100 mM in mitochondria. However, the mitochondrial [$Ca^{2+}$] increase was limited to ${\sim}30{\mu}M$ in the presence of $1{\mu}M$ cytosolic $Ca^{2+}$. Our method solved the problem of NADH signal contamination during the use of Fura-2 analogs, and therefore the method may be useful when NADH interference is expected.
Keywords
Calcium; Fura-2-FF; Mitochondrial membrane potential; NADH; pH;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O'Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda). 2005; 20: 303-315.   DOI
2 Crompton M, Moser R, Ludi H, Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978;82:25-31.   DOI
3 Golovina VA, Blaustein MP. Spatially and functionally distinct $Ca^{2+}$ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997;275:1643-1648.   DOI
4 Page E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol. 1978;235:C147-158.   DOI
5 Carafoli E, Lehninger AL. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J. 1971;122:681-690.   DOI
6 Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods. 2008;46:143-151.   DOI
7 Page E, McCallister LP, Power B. Sterological measurements of cardiac ultrastructures implicated in excitation-contraction coupling. Proc Natl Acad Sci U S A. 1971;68:1465-1466.   DOI
8 Peverly JH, Miller RJ, Malone C, Koeppe DE. Ultrastructural evidence for calcium phosphate deposition by isolated corn shoot mitochondria. Plant Physiol. 1974;54:408-411.   DOI
9 Wier WG. Cytoplasmic [$Ca^{2+}$] in mammalian ventricle: dynamic control by cellular processes. Annu Rev Physiol. 1990;52:467-485.   DOI
10 Bers DM. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol. 1985;248:H366-381.
11 Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198-205.   DOI
12 Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25: 365-451.   DOI
13 Raffaello A, Rizzuto R. Mitochondrial longevity pathways. Biochim Biophys Acta. 2011;1813:260-268.   DOI
14 Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol. 2000;529 Pt 1:37-47.   DOI
15 Griffiths EJ. Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol. 2009; 46:789-803.   DOI
16 Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium. 2000;28:285-296.   DOI
17 Sparagna GC, Gunter KK, Sheu SS, Gunter TE. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 1995;270: 27510-27515.   DOI
18 Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta. 2005; 1717:1-10.   DOI
19 Buntinas L, Gunter KK, Sparagna GC, Gunter TE. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim Biophys Acta. 2001;1504:248-261.   DOI
20 Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem. 2001;276:21482-21488.   DOI
21 Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C. The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol. 1974;6:361-371.   DOI
22 Brand MD. The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. Biochem J. 1985;229: 161-166.   DOI
23 Jung DW, Baysal K, Brierley GP. The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem. 1995; 270:672-678.   DOI
24 Poburko D, Potter K, van Breemen E, Fameli N, Liao CH, Basset O, Ruegg UT, van Breemen C. Mitochondria buffer NCX-mediated $Ca^{2+}$-entry and limit its diffusion into vascular smooth muscle cells. Cell Calcium. 2006;40:359-371.   DOI
25 Gunter TE, Chace JH, Puskin JS, Gunter KK. Mechanism of sodium independent calcium efflux from rat liver mitochondria. Biochemistry. 1983;22:6341-6351.   DOI
26 Wingrove DE, Gunter TE. Kinetics of mitochondrial calcium transport. I. Characteristics of the sodium-independent calcium efflux mechanism of liver mitochondria. J Biol Chem. 1986;261: 15159-15165.
27 Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Dordrecht, Netherlands: Kluwer Academic; 2001.
28 Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG. Measurement of mitochondrial free $Ca^{2+}$ concentration in living single rat cardiac myocytes. Am J Physiol. 1991;261:H1123-1134.   DOI
29 Griffiths EJ, Halestrap AP. Pyrophosphate metabolism in the perfused heart and isolated heart mitochondria and its role in regulation of mitochondrial function by calcium. Biochem J. 1993;290:489-495.   DOI
30 Allen SP, Stone D, McCormack JG. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix $Ca^{2+}$ under various conditions. J Mol Cell Cardiol. 1992;24:765-773.   DOI
31 Du C, MacGowan GA, Farkas DL, Koretsky AP. Calibration of the calcium dissociation constant of Rhod(2)in the perfused mouse heart using manganese quenching. Cell Calcium. 2001;29:217-227.   DOI
32 Hyrc KL, Bownik JM, Goldberg MP. Ionic selectivity of lowaffinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC. Cell Calcium. 2000;27:75-86.   DOI
33 Dong Z, Saikumar P, Griess GA, Weinberg JM, Venkatachalam MA. Intracellular $Ca^{2+}$ thresholds that determine survival or death of energy-deprived cells. Am J Pathol. 1998;152:231-240.
34 Zhao M, Hollingworth S, Baylor SM. AM-loading of fluorescent $Ca^{2+}$ indicators into intact single fibers of frog muscle. Biophys J. 1997;72:2736-2747.   DOI
35 London RE, Rhee CK, Murphy E, Gabel S, Levy LA. NMRsensitive fluorinated and fluorescent intracellular calcium ion indicators with high dissociation constants. Am J Physiol. 1994;266:C1313-1322.   DOI
36 Weinberg JM, Davis JA, Venkatachalam MA. Cytosolic-free calcium increases to greater than 100 micromolar in ATPdepleted proximal tubules. J Clin Invest. 1997;100:713-722.   DOI
37 Jo H, Noma A, Matsuoka S. Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes. J Mol Cell Cardiol. 2006;40:394-404.   DOI
38 Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem. 1979;254:4764-4771.
39 Eng J, Lynch RM, Balaban RS. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J. 1989;55:621-630.   DOI
40 Brandes R, Bers DM. Simultaneous measurements of mitochondrial NADH and $Ca^{2+}$ during increased work in intact rat heart trabeculae. Biophys J. 2002;83:587-604.   DOI
41 Grynkiewicz G, Poenie M, Tsien RY. A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440-3450.
42 Miller DJ, Smith GL. EGTA purity and the buffering of calcium ions in physiological solutions. Am J Physiol. 1984;246:C160-166.   DOI
43 Smith GL, Miller DJ. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985;839:287-299.   DOI
44 McGuigan JA, Kay JW, Elder HY. Critical review of the methods used to measure the apparent dissociation constant and ligand purity in $Ca^{2+}$ and $Mg^{2+}$ buffer solutions. Prog Biophys Mol Biol. 2006;92:333-370.   DOI
45 Schubert J. The use of ion exchangers for the determination of physical-chemical properties of substances, particularly radiotracers, in solution; theoretical. J Phys Colloid Chem. 1948; 52:340-350.   DOI
46 Denton RM, McCormack JG. $Ca^{2+}$ transport by mammalian mitochondria and its role in hormone action. Am J Physiol. 1985;249:E543-554.
47 Ebashi S. Calcium binding activity of vesicular relaxing factor. J Chir (Paris). 1961;50:236-244.
48 Malgaroli A, Milani D, Meldolesi J, Pozzan T. Fura-2 measurement of cytosolic free $Ca^{2+}$ in monolayers and suspensions of various types of animal cells. J Cell Biol. 1987;105:2145-2155.   DOI
49 Denton RM, McCormack JG. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980;119:1-8.
50 Denton RM, McCormack JG. $Ca^{2+}$ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451-466.   DOI
51 Hansford RG. Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol. 1985;102:1-72.
52 Hansford RG. Relation between cytosolic free $Ca^{2+}$ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes. Biochem J. 1987;241:145-151.   DOI
53 McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990;70:391-425.   DOI
54 Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427:360-364.   DOI
55 Al-Nasser I, Crompton M. The reversible $Ca^{2+}$-induced permeabilization of rat liver mitochondria. Biochem J. 1986;239:19-29.   DOI
56 Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233-249.   DOI
57 Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994;267:C313-339.   DOI
58 Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res. 2004;61:372-385.   DOI
59 Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84:153-166.   DOI
60 Rasmussen H, Barrett PQ. Calcium messenger system: an integrated view. Physiol Rev. 1984;64:938-984.   DOI
61 Carafoli E. Mitochondria, $Ca^{2+}$ transport and the regulation of heart contraction and metabolism. J Mol Cell Cardiol. 1975;7:83-87.   DOI