• Title/Summary/Keyword: Myocardium thickness

Search Result 14, Processing Time 0.026 seconds

Murine Heart Wall Imaging with Optical Coherence Tomography

  • Kim Jee-Hyun;Lee Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • M-mode imaging of the in vivo murine myocardium using optical coherence tomography (OCT) is described. Application of conventional techniques (e.g. MRI, Ultrasound imaging) for imaging the murine myocardium is problematic because the wall thickness is less than 1.5 mm (20 g mouse), and the heart rate can be as high as six hundred beats per minute. To acquire a real-time image of the murine myocardium, OCT can provide sufficient spatial resolution ($10{\mu}m$) and imaging speed (1000 A-scans/s). Strong light scattering by blood in the heart causes significant light attenuation, which makes delineation of the endocardium-chamber boundary problematic. To measure the thickness change of the myocardium during one heart beat cycle, a myocardium edge detection algorithm is developed and demonstrated.

Patient-Specific Mapping between Myocardium and Coronary Arteries using Myocardial Thickness Variation

  • Dongjin Han
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.187-194
    • /
    • 2024
  • For precise cardiac diagnostics and treatment, we introduce a novel method for patient-specific mapping between myocardial and coronary anatomy, leveraging local variations in myocardial thickness. This complex system integrates and automates multiple sophisticated components, including left ventricle segmentation, myocardium segmentation, long-axis estimation, coronary artery tracking, and advanced geodesic Voronoi distance mapping. It meticulously accounts for variations in myocardial thickness and precisely delineates the boundaries between coronary territories according to the conventional 17-segment myocardial model. Each phase of the system provides a step-by-step approach to automate coronary artery mapping onto the myocardium. This innovative method promises to transform cardiac imaging by offering highly precise, automated, and patient-specific analyses, potentially enhancing the accuracy of diagnoses and the effectiveness of therapeutic interventions for various cardiac conditions.

Ultrastructural Studies on the Cabbage Butterfly, Pieris rapae L. I . Fine Structure on the Dorsal Vessel (배추흰나비 (Pieris rapae L.)의 미세구조(微細構造)에 관한 연구(硏究) I . 배관(背管)의 미세구조(微細構造))

  • Kim, C.W.;Kim, W.K.;Lee, K.O.
    • Applied Microscopy
    • /
    • v.15 no.1
    • /
    • pp.71-85
    • /
    • 1985
  • The ultrastructure on the dorsal vessel of 5-day-old cabbage butterfly, Pieris rapae L., was carried out using the transmission and scanning electron microscope. The results are as follows. 1) The aorta. The aorta is simple tubular type and consists of the inner and outer membrane of the myocardium and thick myocardium is located between them. However the inner membrane with $0.26{\mu}m$ thickness and outer membrane with $0.08{\mu}m$ are composed of fibrous materials, the former is composed of low and high densed fibrous materials and the latter appears homogeneous layer. The myocardium consists of typical striated muscles. The sarcomere with $1.6{\mu}m$ length and in cross section, each thick filaments are surrounded by $7{\sim}8$ thin filaments. The intercalated disc is joining the end of the two muscle cells, desmosomes and septate junctions are appeared between the neighboring muscle cells. 2) The heart. The heart composing of myocardium enclosed by its inner and outer membrane as the aorta has a series of well formed segmental chamber. The arrangement of myofilaments, cell adhensions and membrane elements are observed as same as at the aorta. The inner membrane of the heart is deeply invaginated into the myocardium than the outer membrane and a lot of well developed mitochondria with rod shape are aggregated in the folds. The longitudinally and transversely oriented tubule system formed by invagnation of the sarcolemma into the muscle bundle is built up dyad with the sarcoplasmic reticulum as the aorta. The slit is formed by deeply invagination of the inner membrane of myocadium toward the muscle layer and then the inner and outer membrane of myocardium are fused. Therefore, the ostium is formed between the myocardium and situated at the lateral side of the myocardium.

  • PDF

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.45-45
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was performed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37${\times}$1.37${\times}$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac circles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.92-92
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was peformed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37$\times$1.37$\times$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac cycles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF

A Study on Comparison of Cardiac Ejection Fraction Values Measured in Myocardium SPECT and Cine MRI

  • Han, Jung-Seok;Dong, Kyung-Rae;Park, Yong-Soon;Chung, Woon-Kwan;Cho, Jae-Hwan;Cho, Young-Kuk
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.229-232
    • /
    • 2012
  • This study examined the correlation between MR cine and myocardium Single-photon emission computed tomography (SPECT) by comparing the measured cardiac ejection fractions. The usefulness of cardiac MRI was also evaluated. Ten patients (8 men, 2 women and average age of 58.6 years), who underwent a myocardium SPECT scan and cardiac cine MRI scan among patients who visited the hospital for the chief complaint of cardiac disorder from June 1, 2010 to February 10, 2011, were enrolled in this study. The cardiac ejection fraction was calculated from the images obtained in both scans. The data was used to examine the correlation. The regression equation the cardiac ejection fraction values of the 10 patients obtained in myocardium SPECT and MRI cine was Y = 1.12X-8.91 ($R^2$ = 0.78, significance of F = 0.001639, and confidence level of 95%). The results were significant when the cardiac ejection fraction obtained from MRI cine was compared with that obtained from myocardium SPECT. Overall, a cardiac examination using MRI enables an investigation of not only the ejection fraction but also the ED and ES volumes, stroke volume, wall thickness, and wall thickening in a higher spatial resolution despite the examination being conducted once. This examination is believed to be very useful for diagnosing patients with cardiac disease.

Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy

  • Wooil Kim;Minje Lim;You Joung Jang;Hyun Jung Koo;Joon-Won Kang;Sung-Ho Jung;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1054-1065
    • /
    • 2021
  • Objective: We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods: From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results: During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and -9.4 mL, and 6.0 mL and -3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion: Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.

Microanatomy of the Heart-kidney Complex of Tegillarca granosa (Bivalvia: Arcidae) (꼬막 Tegillarca granosa 심신낭복합체의 미세해부학적 특징)

  • Ku, Kayeon;Ju, Sun Mi;Lee, Jung Sick
    • The Korean Journal of Malacology
    • /
    • v.31 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • This study was conducted to provide the microanatomical information of the heart-kidney complex of Tegillarca granosa. The heart-kidney complex was located in the pericardial cavity between the dosal visceral mass and posterior adductor muscle. The heart composed of two atrium and one ventricle. The kidney composed of a pair of left and right. The atrium and ventricle of the heart were composed of the epicardium, myocardium and endocardium. The epicardium of simple epithelial layer composed of cuboidal epithelial cells that had a strong basophilic nucleus located in the center. The myocardium composed of muscle fiber bundles. The myocardium in ventricle was denser than in the atrium. The endocardium of simple epithelial layer composed of squamous epithelial cell that had a strong basophilic nucleus was located in the center. The endocardium thickness of the atrium was $6.04({\pm}2.26){\mu}m$, endocardium thickness of the atrium was $7.36({\pm}3.21){\mu}m$, and appeared to be thicker in the ventricle. The kidney composed of numerous renal tubules. The renal tubule of simple epithelial layer composed of columnar epithelial cell with nucleus located in the basal zone and a number of cytoplasmic granules. The developed striated border was the inner epidermis.

Automated Functional Morphology Measurement Using Cardiac SPECT Images (SPECT 영상을 사용한 기능적 심근형태의 자동 계측법 개발)

  • Choi, Seok-Yoon;Ko, Seong-Jin;Kang, Se-Sik;Kim, Chang-Soo;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.133-139
    • /
    • 2012
  • For the examination of nuclear medicine, myocardial scan is a good method to evaluate a hemodynamic importance of coronary heart disease. but, the automatized qualitative measurement is additionally necessary to improve the decoding efficiency. we suggests the creation of cardiac three-dimensional model and model of three-dimensional cardiac thickness as a new measurement. For the experiment, cardiac reduced cross section was obtained from SPECT. Next, the pre-process was performed and image segmentation was fulfilled by level set. for the modeling of left cardiac thickness, it was realized by applying difference equation of two-dimensional laplace equation. As the result of experiment, it was successful to measure internal wall and external wall and three-dimensional modeling was realized by coordinate. and, with laplace formula, it was successful to develop the thickness of cardiac wall. through the three-dimensional model, defects were observed easily and position of lesion was grasped rapidly by the revolution of model. The model which was developed as the support index of decoding will provide decoding information to doctor additionally and reduce the rate of false diagnosis as well as play a great role for diagnosing IHD early.

Alterations in Left ventricular End-systolic Wall Stress During Short-term Follow-up After Correction of Isolated Congenital Aortic Stenosis (선천성 대동맥 협착증의 술전 및 술후 단기간의 수축말기 좌심실 내벽 스트레스의 변화)

  • 김시호
    • Journal of Chest Surgery
    • /
    • v.33 no.10
    • /
    • pp.777-784
    • /
    • 2000
  • Congenital aortic stenosis in children is characterized by "excessive" left ventricular hypertrophy with reduced left ventricular systolic wall stress that allows for supernormal ejection performance. We hypothesized that left ventricular wall stress was decreased immediately after surgical correction of pure congenital aortic stenosis. Also measuring postoperative left ventricular wall stress was a useful noninvasive measurement that allowed direct assessment for oxygen consumption of myocardium than measuring the peak systolic pressure gradient between ascending aorta and left ventricle for the assessment of surgical results. Material and Method: Between September 1993 and August 1999, 8 patients with isolated congenital aortic stenosis who underwent surgical correction at Yonsei cardiovascular center were evaluated. There were 6 male and 2 female patients ranging in age from 2 to 11 years(mean age, 10 years). Combined Hemodynamic-Ultrasonic method was used for studying left ventricular wall stress. We compared the wall stress peak systolic pressure gradient and ejection fraction preoperatively and postoperatively. Result: After surgical correction peak aortic gradient fell from 58.4${\pm}$17.6, to 23.7${\pm}$17.7 mmHg(p=0.018) and left ventricular ejection fraction decreased but it is not statistically significant. In the consideration of some factors that influence left ventricular end-systolic wall stress excluding one patient who underwent reoperation for restenosis of left ventricular outflow tract left ventricular end-systolic pressure and left ventricular end-systolic dimension were fell from 170.6${\pm}$24.3 to 143.7${\pm}$27.1 mmHg and from 1.78${\pm}$0.4 to 1.76${\pm}$0.4 cm respectively and left ventricular posterior wall thickness was increased from 1.10${\pm}$0.2, to 1.27${\pm}$0.3cm but it was not statistically singificant whereas left ventricular end-systolic wall stress fell from 79.2${\pm}$24.9 to 57.1${\pm}$27.6 kdynes/cm2(p=0.018) in 7 patients. For one patient who underwent reoperation peak aortic gradient fell from 83.0 to 59.7 mmHg whereas left ventricular end-systolic wall stress increased from 67.2 to 97.0 kdynes/cm2 The intervals did not change significnatly. Conclusion ; We believe that probably some factors that are related to left ventricular geometry influenced the decreased left ventricular wall stress immediately after surgical correction of isolated congenital aortic stenosis. Left ventricular wall stress is a noninvasive measurement and can allow for more direct assesment than measuring peak aortic gradient particularly in consideration of the stress and oxygen consumption of the myocardium therefore we can conclude it is a useful measurement for postoperative assessment of congenital aortic stenosis.

  • PDF