Automated Functional Morphology Measurement Using Cardiac SPECT Images

SPECT 영상을 사용한 기능적 심근형태의 자동 계측법 개발

  • Choi, Seok-Yoon (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Ko, Seong-Jin (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kang, Se-Sik (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Chang-Soo (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Jung-Hoon (Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 최석윤 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 고성진 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2012.03.07
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

For the examination of nuclear medicine, myocardial scan is a good method to evaluate a hemodynamic importance of coronary heart disease. but, the automatized qualitative measurement is additionally necessary to improve the decoding efficiency. we suggests the creation of cardiac three-dimensional model and model of three-dimensional cardiac thickness as a new measurement. For the experiment, cardiac reduced cross section was obtained from SPECT. Next, the pre-process was performed and image segmentation was fulfilled by level set. for the modeling of left cardiac thickness, it was realized by applying difference equation of two-dimensional laplace equation. As the result of experiment, it was successful to measure internal wall and external wall and three-dimensional modeling was realized by coordinate. and, with laplace formula, it was successful to develop the thickness of cardiac wall. through the three-dimensional model, defects were observed easily and position of lesion was grasped rapidly by the revolution of model. The model which was developed as the support index of decoding will provide decoding information to doctor additionally and reduce the rate of false diagnosis as well as play a great role for diagnosing IHD early.

핵의학 검사에 있어서 심근 관류스캔은 관상동맥질환의 혈역학적 중요성을 평가하는 좋은 방법이다. 그러나 판독효율을 높이기 위해서 자동화된 정량적 계측 방법이 추가적으로 제시되어야한다. 본 연구에서는 판독에 필요한 심근의 3차원 기능모델과 심근 두께 계산 모델을 제시한다. 개발을 위해서 SPECT로 부터 심장의 단축단면상을 얻었고 전처리를 방정식을 적용하여 좌심근 두께의 모델링을 구현하였다. 실험결과 슬라이스 단축방향 영상으로부터 내벽과 외벽을 계측하는데 성공하였고, 계산된 좌표를 이용해서 3차원 모델링을 구현하였다. 다음 라플라스 식을 사용하여 심벽 두께의 3차원 모델을 완성하였다. 3차원 모델을 통해서 결절 부위가 쉽게 관찰할 수 있고, 3차원 모델의 회전을 통해서 병변의 위치를 빨리 파악할 수 있는 특징을 가진다. 판독 보조지표로서의 개발된 제안된 모델은 보조적 판독정보를 제공하고 오진의 확률을 낮추는데 기여할 것으로 예상한다. 허혈성 심장질환 환자의 조기 진단에도 큰 역할을 할 것이다.

Keywords

References

  1. KS Won, HW Kim.: Diagnosis of Coronary Artery Disease Using Myocardial Perfusion SPECT, Nucl Med Mol Imaging, 43(3), 196- 202, 2009
  2. JG Schwartz , RB Johnson , FC Aepfelbacher et al.: Sensitivity, specificity and accuracy of stress SPECT myocardial perfusion imaging for detection of coronary artery disease in the distribution of first-order branch vessels, using an anatomical matching of angiographic and perfusion data, Nucl Med Commun 24(5), 543- 549, 2003 https://doi.org/10.1097/00006231-200305000-00010
  3. AK Paul, HA Nabi.: Gated Myocardial Perfusion SPECT: Basic Principles,Technical Aspects and Clinical Applications, J Nucl Med Technol, 32, 179-187, 2004
  4. RP Jannick, V Vo, B Bloss, CK Abbey.: Fast algorithms for histogram matching: application to texture synthesis, J. Electronic Imaging, 9(1), 39-45, 2000 https://doi.org/10.1117/1.482725
  5. RC Gonzalez, RE Woods.: digital image processing 3rd edition, Pearson Pretice hall, 120-144, 2008
  6. S. Osher, JA. Sethian.: Pronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79, 12-49, 1988 https://doi.org/10.1016/0021-9991(88)90002-2
  7. T. Chan, L. Vese.: Active contours without edges, IEEE Trans. Imag. Proc., 10, 266-277, 2001 https://doi.org/10.1109/83.902291
  8. S. Choi, HC. Kim, M Kim.: Segmentation of the left ventricle in myocardial perfusion SPECT using variational level set formulation, NSS/MIC, 345-362, 2007
  9. S. E. Jones, B. R. Buchbinder, I. Aharon.: Three-Dimensional Mapping of Cortical. Thickness Using Laplace's Equation, Human Brain Mapping, 11(1), 12-32. 2000 https://doi.org/10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K