• 제목/요약/키워드: Myocardium thickness

검색결과 14건 처리시간 0.029초

Murine Heart Wall Imaging with Optical Coherence Tomography

  • Kim Jee-Hyun;Lee Byeong-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.42-47
    • /
    • 2006
  • M-mode imaging of the in vivo murine myocardium using optical coherence tomography (OCT) is described. Application of conventional techniques (e.g. MRI, Ultrasound imaging) for imaging the murine myocardium is problematic because the wall thickness is less than 1.5 mm (20 g mouse), and the heart rate can be as high as six hundred beats per minute. To acquire a real-time image of the murine myocardium, OCT can provide sufficient spatial resolution ($10{\mu}m$) and imaging speed (1000 A-scans/s). Strong light scattering by blood in the heart causes significant light attenuation, which makes delineation of the endocardium-chamber boundary problematic. To measure the thickness change of the myocardium during one heart beat cycle, a myocardium edge detection algorithm is developed and demonstrated.

Patient-Specific Mapping between Myocardium and Coronary Arteries using Myocardial Thickness Variation

  • Dongjin Han
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.187-194
    • /
    • 2024
  • For precise cardiac diagnostics and treatment, we introduce a novel method for patient-specific mapping between myocardial and coronary anatomy, leveraging local variations in myocardial thickness. This complex system integrates and automates multiple sophisticated components, including left ventricle segmentation, myocardium segmentation, long-axis estimation, coronary artery tracking, and advanced geodesic Voronoi distance mapping. It meticulously accounts for variations in myocardial thickness and precisely delineates the boundaries between coronary territories according to the conventional 17-segment myocardial model. Each phase of the system provides a step-by-step approach to automate coronary artery mapping onto the myocardium. This innovative method promises to transform cardiac imaging by offering highly precise, automated, and patient-specific analyses, potentially enhancing the accuracy of diagnoses and the effectiveness of therapeutic interventions for various cardiac conditions.

배추흰나비 (Pieris rapae L.)의 미세구조(微細構造)에 관한 연구(硏究) I . 배관(背管)의 미세구조(微細構造) (Ultrastructural Studies on the Cabbage Butterfly, Pieris rapae L. I . Fine Structure on the Dorsal Vessel)

  • 김창환;김우갑;이근옥
    • Applied Microscopy
    • /
    • 제15권1호
    • /
    • pp.71-85
    • /
    • 1985
  • The ultrastructure on the dorsal vessel of 5-day-old cabbage butterfly, Pieris rapae L., was carried out using the transmission and scanning electron microscope. The results are as follows. 1) The aorta. The aorta is simple tubular type and consists of the inner and outer membrane of the myocardium and thick myocardium is located between them. However the inner membrane with $0.26{\mu}m$ thickness and outer membrane with $0.08{\mu}m$ are composed of fibrous materials, the former is composed of low and high densed fibrous materials and the latter appears homogeneous layer. The myocardium consists of typical striated muscles. The sarcomere with $1.6{\mu}m$ length and in cross section, each thick filaments are surrounded by $7{\sim}8$ thin filaments. The intercalated disc is joining the end of the two muscle cells, desmosomes and septate junctions are appeared between the neighboring muscle cells. 2) The heart. The heart composing of myocardium enclosed by its inner and outer membrane as the aorta has a series of well formed segmental chamber. The arrangement of myofilaments, cell adhensions and membrane elements are observed as same as at the aorta. The inner membrane of the heart is deeply invaginated into the myocardium than the outer membrane and a lot of well developed mitochondria with rod shape are aggregated in the folds. The longitudinally and transversely oriented tubule system formed by invagnation of the sarcolemma into the muscle bundle is built up dyad with the sarcoplasmic reticulum as the aorta. The slit is formed by deeply invagination of the inner membrane of myocadium toward the muscle layer and then the inner and outer membrane of myocardium are fused. Therefore, the ostium is formed between the myocardium and situated at the lateral side of the myocardium.

  • PDF

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.45-45
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was performed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37${\times}$1.37${\times}$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac circles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was peformed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37$\times$1.37$\times$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac cycles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF

A Study on Comparison of Cardiac Ejection Fraction Values Measured in Myocardium SPECT and Cine MRI

  • Han, Jung-Seok;Dong, Kyung-Rae;Park, Yong-Soon;Chung, Woon-Kwan;Cho, Jae-Hwan;Cho, Young-Kuk
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.229-232
    • /
    • 2012
  • This study examined the correlation between MR cine and myocardium Single-photon emission computed tomography (SPECT) by comparing the measured cardiac ejection fractions. The usefulness of cardiac MRI was also evaluated. Ten patients (8 men, 2 women and average age of 58.6 years), who underwent a myocardium SPECT scan and cardiac cine MRI scan among patients who visited the hospital for the chief complaint of cardiac disorder from June 1, 2010 to February 10, 2011, were enrolled in this study. The cardiac ejection fraction was calculated from the images obtained in both scans. The data was used to examine the correlation. The regression equation the cardiac ejection fraction values of the 10 patients obtained in myocardium SPECT and MRI cine was Y = 1.12X-8.91 ($R^2$ = 0.78, significance of F = 0.001639, and confidence level of 95%). The results were significant when the cardiac ejection fraction obtained from MRI cine was compared with that obtained from myocardium SPECT. Overall, a cardiac examination using MRI enables an investigation of not only the ejection fraction but also the ED and ES volumes, stroke volume, wall thickness, and wall thickening in a higher spatial resolution despite the examination being conducted once. This examination is believed to be very useful for diagnosing patients with cardiac disease.

Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy

  • Wooil Kim;Minje Lim;You Joung Jang;Hyun Jung Koo;Joon-Won Kang;Sung-Ho Jung;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1054-1065
    • /
    • 2021
  • Objective: We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods: From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results: During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and -9.4 mL, and 6.0 mL and -3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion: Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.

꼬막 Tegillarca granosa 심신낭복합체의 미세해부학적 특징 (Microanatomy of the Heart-kidney Complex of Tegillarca granosa (Bivalvia: Arcidae))

  • 구가연;주선미;이정식
    • 한국패류학회지
    • /
    • 제31권4호
    • /
    • pp.291-298
    • /
    • 2015
  • 꼬막 심신낭복합체의 미세해부학적 구조를 해부 및 광학현미경을 이용하여 기재하였다. 심신낭복합체는 발 기저부 위쪽, 내장낭 등쪽 부근과 후폐각근 사이의 위심강 안에 위치하였다. 심장은 하나의 심실과 두 개의 심방으로 구성되었으며, 신장은 좌 우 한 쌍으로 구성되어 있었다. 심방과 심실은 심외막, 심근, 심내막으로 구성된다. 심외막은 단층상피층으로서 입방형 상피세포로 구성되며, 이들 상피세포의 핵은 중앙에 위치하고 강한 호염기성을 나타냈다. 심근은 다수의 근섬유 다발로 구성되며, 근섬유 다발은 심방보다 심실에서 더 치밀하게 나타났다. 심내막은 단층상피층으로서 편평상피세포로 구성되며, 핵은 중앙에 위치하고 강한 호염기성을 나타냈다. 심방에서 심내막의 두께는 $6.04({\pm}2.26){\mu}m$였고, 심실에서 심내막의 상피층 두께는 $7.36({\pm}3.21){\mu}m$로 심방에서보다 심실에서 더 두껍게 나타났다. 신장은 다수의 세뇨관으로 모인 집합적 구조였으며, 신장의 세뇨관은 단층상피층으로서 원주형 상피세포로 구성되었다. 핵은 기저부에 존재하였으며, 세포질에는 다수의 과립들이 관찰되었고 자유면에는 선조연이 발달되어 있었다.

SPECT 영상을 사용한 기능적 심근형태의 자동 계측법 개발 (Automated Functional Morphology Measurement Using Cardiac SPECT Images)

  • 최석윤;고성진;강세식;김창수;김정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제35권2호
    • /
    • pp.133-139
    • /
    • 2012
  • 핵의학 검사에 있어서 심근 관류스캔은 관상동맥질환의 혈역학적 중요성을 평가하는 좋은 방법이다. 그러나 판독효율을 높이기 위해서 자동화된 정량적 계측 방법이 추가적으로 제시되어야한다. 본 연구에서는 판독에 필요한 심근의 3차원 기능모델과 심근 두께 계산 모델을 제시한다. 개발을 위해서 SPECT로 부터 심장의 단축단면상을 얻었고 전처리를 방정식을 적용하여 좌심근 두께의 모델링을 구현하였다. 실험결과 슬라이스 단축방향 영상으로부터 내벽과 외벽을 계측하는데 성공하였고, 계산된 좌표를 이용해서 3차원 모델링을 구현하였다. 다음 라플라스 식을 사용하여 심벽 두께의 3차원 모델을 완성하였다. 3차원 모델을 통해서 결절 부위가 쉽게 관찰할 수 있고, 3차원 모델의 회전을 통해서 병변의 위치를 빨리 파악할 수 있는 특징을 가진다. 판독 보조지표로서의 개발된 제안된 모델은 보조적 판독정보를 제공하고 오진의 확률을 낮추는데 기여할 것으로 예상한다. 허혈성 심장질환 환자의 조기 진단에도 큰 역할을 할 것이다.

선천성 대동맥 협착증의 술전 및 술후 단기간의 수축말기 좌심실 내벽 스트레스의 변화 (Alterations in Left ventricular End-systolic Wall Stress During Short-term Follow-up After Correction of Isolated Congenital Aortic Stenosis)

  • 김시호
    • Journal of Chest Surgery
    • /
    • 제33권10호
    • /
    • pp.777-784
    • /
    • 2000
  • Congenital aortic stenosis in children is characterized by "excessive" left ventricular hypertrophy with reduced left ventricular systolic wall stress that allows for supernormal ejection performance. We hypothesized that left ventricular wall stress was decreased immediately after surgical correction of pure congenital aortic stenosis. Also measuring postoperative left ventricular wall stress was a useful noninvasive measurement that allowed direct assessment for oxygen consumption of myocardium than measuring the peak systolic pressure gradient between ascending aorta and left ventricle for the assessment of surgical results. Material and Method: Between September 1993 and August 1999, 8 patients with isolated congenital aortic stenosis who underwent surgical correction at Yonsei cardiovascular center were evaluated. There were 6 male and 2 female patients ranging in age from 2 to 11 years(mean age, 10 years). Combined Hemodynamic-Ultrasonic method was used for studying left ventricular wall stress. We compared the wall stress peak systolic pressure gradient and ejection fraction preoperatively and postoperatively. Result: After surgical correction peak aortic gradient fell from 58.4${\pm}$17.6, to 23.7${\pm}$17.7 mmHg(p=0.018) and left ventricular ejection fraction decreased but it is not statistically significant. In the consideration of some factors that influence left ventricular end-systolic wall stress excluding one patient who underwent reoperation for restenosis of left ventricular outflow tract left ventricular end-systolic pressure and left ventricular end-systolic dimension were fell from 170.6${\pm}$24.3 to 143.7${\pm}$27.1 mmHg and from 1.78${\pm}$0.4 to 1.76${\pm}$0.4 cm respectively and left ventricular posterior wall thickness was increased from 1.10${\pm}$0.2, to 1.27${\pm}$0.3cm but it was not statistically singificant whereas left ventricular end-systolic wall stress fell from 79.2${\pm}$24.9 to 57.1${\pm}$27.6 kdynes/cm2(p=0.018) in 7 patients. For one patient who underwent reoperation peak aortic gradient fell from 83.0 to 59.7 mmHg whereas left ventricular end-systolic wall stress increased from 67.2 to 97.0 kdynes/cm2 The intervals did not change significnatly. Conclusion ; We believe that probably some factors that are related to left ventricular geometry influenced the decreased left ventricular wall stress immediately after surgical correction of isolated congenital aortic stenosis. Left ventricular wall stress is a noninvasive measurement and can allow for more direct assesment than measuring peak aortic gradient particularly in consideration of the stress and oxygen consumption of the myocardium therefore we can conclude it is a useful measurement for postoperative assessment of congenital aortic stenosis.

  • PDF