• 제목/요약/키워드: Myocardial ischemia/reperfusion injury

검색결과 72건 처리시간 0.027초

적출 쥐 심장에서 장시간의 심장보존시 허혈성 전조건화가 심근보호에 미치는 영향 (Cardioprotective Efficacy of Ischemic Preconditioning on Long-Term Myocardial Preservation in Isolated Rat Heart)

  • 허동명;장봉현
    • Journal of Chest Surgery
    • /
    • 제33권8호
    • /
    • pp.605-612
    • /
    • 2000
  • Background: Ischemic preconditioning enhances the tolerance of myocardium against ischemia/reperfusion injury, with the enhancement of the recovery of post-ischemic myocardial function. This study was disigned to assess whether the protective effect of ischemic preconditioning could provide one additional hour of myocardial preservation in four hour myocardial ischemia in a rate heart. Material and method: Fourty four Spargue-Dawley rats, weighing 300~450gm, were divided into four groups. Group 1(n=7) and group 3(n=12) were subjected to 30 minutes of aerobic Langendorff perfusion without ischemic preconditioning and then preserved in saline solution at 2~4$^{\circ}C$ for 4 hours and 5 respectively. Group 2(n=7) and group 4(n=18) were perfused in the same way for 20 minutes, followed by 3 minutes of global mormothermic ischemia and 10 minutes of perfusion and then preserved in the same cold saline solution for 4 hours and 5 hours respectively. Heart rate, left ventricular developed pressure(LVDP), and coronary flow were measured at 15 minutes during perfusion as baseline. Spontaneous defibrillation time was measured after reperfusion. Heart rate, LVDP, and coronary flow were also recorded at 15 minutes, 30 minutes, and 45 minutes during reperfusion. Samples of the apical left ventricular wall were studied using a transmission electron microscope. Result: Time of spontaneous defibrillation(TSD) was significantly longer in group 4 than in group 1(p<0.001), and TSD in group 1 was significantly longer in comparision to that of group 2(p<0.05). Heart rate at 45 minutes was significantly higher in group 1 than in group 4(p<0.05). Heart rate at 15 min was significantly higher in group 2 than in group 1(p<0.001) and in group 4 than in group 3(p<0.05). Left ventricular developed pressure(LVDP) at 30 minutes and 45 minutes was higher in group 1 than in group 4(p<0.01), LVDP at 45 minutes was higher in group 4 than in group 3(p<0.05). Rate-pressure product(RPP) at 30 minutes and 45 minutes was higher in group 1 than in group 4(p<0.05). RPP at 15 minutes was higher in group 2 than in group 1(p<0.01). RPP at 30 minutes and 45 minutes was higher in group 4 than in group 3(p<0.05). Group 2 showed relatively less sarcoplasmic edema and less nuclear chromatin clearance than group 1. Group 4 showed less myocardial cell damage than group 3, group 4 showed less myocardial cell damage than group 3, group 4 showed more myocardial cell edema than group 1. Conclusion: Ischemic preconditioning enhanced the recovery of postischemic myocardial function after 4 hours and 5 hours preservation. However, it was not demonstrated that ischemic preconditioning could definitely provide one additional hour of myocardial preservation in four hour myocardial ischemia in a rat heart.

  • PDF

허혈 및 재관류가 흰쥐 및 고양이 심장에 미치는 영향에 관한 형태계측학적 연구 (A Quantitative Ultrastructural Study on the Effects of Ischemia and Reperfusion on the Rat and Cat Hearts)

  • 박영식;엄창섭;서영석
    • Applied Microscopy
    • /
    • 제22권1호
    • /
    • pp.42-54
    • /
    • 1992
  • To understand the structural changes of the myocardial myocytes and endothelial cells in ischemic and reperfused heart, and to elucidate their roles in those conditions, the authors observed cat and rat myocardium ultrastructurally and evaluated them with morphometric techniques. In cat, mild ischemia and moderate degree reperfusion injury was induced by ligation of the anterior interventricular branch of left coronary artery and reperfusion. In rat, severe ischemia and irreversible reperfusion iniury was made using in vitro Langendorff techniques. In normal cat myocytes, the volume densities of cytoplasm, myofibrils, mitochondria, sarcoplasmic reticulum and T tubules were $0.11{\pm}0.013,\;0.51{\pm}0.096,\;0.25{\pm}0.082,\;0.09{\pm}0.008,\;0.02{\pm}0.010$ (Mean${\pm}$S.D.) respectively, and the myofibril/mitochondria ratio was $2.33{\pm}1.379$. The numerical density and average volume of mitochondria were $0.76{\pm}0.210/{\mu}m^3$ and $0.33{\pm}0.057{\mu}m^3$ respectively. In normal cat endothelial cells, the volume densities of cytoplasm, cytoplasmic vesicles, tubular systems (including endoplasmic reticulum and Golgi apparatus) and mitochondria were $0.43{\pm}0.023,\;0.28{\pm}0.007,\;0.22{\pm}0.021,\;0.03{\pm}0.014$ respectively. The mean thickness of endothelial cells was $230{\pm}45.2{\mu}m$. The numerical density and average volume of cytoplasmic vesicles were $508{\pm}55.0/{\mu}m^3,\;578{\pm}104.8nm^3$ respectively. In cat myocytes which received mild ischemic injury, the volume densities of organelles were not changed significantly in ischemic and reperfusion states. In reperfusion group myocytes, the numerical density of mitochondria was decreased significantly and the average volume was increased significantly. In endothelial cells, the volume density of tubular system in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group were increased significantly. In rat myocytes which received severe ischemic injury, the volume density and average volume of mitochondria were increased significantly, and the volume density of sarcoplasmic reticulum and numerical density of mitochondria were decreased significantly in both ischemic and reperfusion groups. In ischemic and reperfused endothelial cells, the volume density and numerical density of cytoplasmic vesicles, the volume density of cytoplasm were decreased significantly. The volume densities of tubular system were increased significantly in both ischemic and reperfused groups. The volume density of mitochondria in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group showed significant increase. The authors, based on the above observations, conclude that the mitochondria of myocytes and the cytoplasmic vesicles of endothelia are the first group of targets in ischemic and reperfusion injury and in this respect, the degree of ischemic insult is not significant. The role of myocyte mitochondria in reperfusion injury may be insignificant, but endothelial cells may contribute actively to reperfusion injury.

  • PDF

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

L-Arginine의 흰쥐 적출심근보호 효과에 관한 연구 (Study on Myocardial Protective Effect of L-arginine)

  • 이인성;이헌재
    • Journal of Chest Surgery
    • /
    • 제29권10호
    • /
    • pp.1076-1080
    • /
    • 1996
  • 허혈후 재관류시 일산화질소의 전구체인 L-arginin에 심근기능에 미치는 영향은 각 연구의 조건에 따라 일정하지 않다. 저자들은 L-arginine의 농도에 의한 심근보호효과의 차이를 알아보고자 본 연구를 시행하였다. 란겐돌프 관류장치하의 흰쥐 적출심장에 37.5$^{\circ}C$에서 30분의 허혈과 30분의 재관류를 실시하면서 재관류시 관류액에 L-arginine을 첨가하여 농도를 1, 2, 3, 4 mm/L로 하였고 대 조군에는 L-arginine을 첨가하지 않았다. 허혈기 직전과 재관류 30분에 좌심실 수축기능(좌심실 발생압, 좌심실압 최대 순간 증가율), 이완기능(좌심실압 최대 순간 감소율)과 관상관류량을 측정하였다. L-arginine 농도가 1mm/L, 2 mm/L인 실험군은 좌심실 발생압, 좌심실압 최대 순간증가율, 좌심실압 최대 순간감소율 및 관상관류량의 회복률이 대조군에 비해 통계적 유의성은 없었으나 우수한 경향을 보였다. 그러나 L-arginine의 농도가 증가함에 따라 회복률은 감소하여 4 mM/L농도의 실험군은 대조군보다 유의하게 낮은 회복률을 보였다(p(0.05). 이러한 연구결과를 통해 심근허혈후 재관류시 심근기능 및 관상관류량 회복을 향상시키기 위해서는 L-arginine을 2mM/ 이하의 농도로 투여 해야 하며 향후 그 이상의 높은 농도에서 나타난 회복 저하에 관한 연구가 필요할 것으로 생각된다.

  • PDF

Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig

  • Lim, Kyu Hee;Kang, Chang-Won;Choi, Jin-Yong;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.283-289
    • /
    • 2013
  • This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/$dt_{max}$) and maximal rate of relaxation (-dP/$dt_{max}$). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.

Dendropanax morbifera Extract Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Inhibition of Reactive Oxygen Species Generation and Calcium Perturbation

  • Lim, Leejin;Ju, Sujin;Song, Heesang
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.136-142
    • /
    • 2019
  • Ischemia/reperfusion-induced myocardial injury is the main cause of acute myocardial infarction. Dendropanax morbifera $L{\acute{e}}veille$ has been used in traditional medicines for the treatment of various diseases such as headache, infectious diseases, and general debility. However, the effect of extract from D. morbifera (EDM) on myocardial ischemic injury is still unknown. In this study, the effects of EDM on neonatal rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury were investigated. The viability of cardiomyocytes with H (30 min)/R (1 h) decreased; however, treatment with EDM significantly inhibited H/R injury-induced cardiomyocyte death. Further, we observed that reactive oxygen species (ROS) generation and intracellular calcium concentration ($Ca^{2+}{_i}$) were significantly reduced in EDM-treated cardiomyocytes compared with that in H/R-injured positive control. In addition, western blotting results showed that EDM attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. These results suggest that EDM ameliorates ROS generation and $Ca^{2+}{_i}$ homeostasis to prevent dysregulation of calcium regulatory proteins in the heart, thereby exerting cardioprotective effects and reducing hypoxia-induced cardiomyocyte damage, which verifies the potential use of EDM as a new therapeutic agent for the treatment of myocardial ischemic injury.

EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway

  • Zhang, Chao;Wang, Deng-Feng;Zhang, Zhuang;Han, Dong;Yang, Kan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.584-590
    • /
    • 2017
  • Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, ${\gamma}$-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

허혈심근 Xanthine Oxidase 의 전환에 관한 연구 (Conversion of Myocardial Xanthine Oxidase in Ischemic Heart of Rat)

  • 박창권
    • Journal of Chest Surgery
    • /
    • 제21권5호
    • /
    • pp.803-815
    • /
    • 1988
  • The present experiments were performed to confirm the hypothesis that xanthine oxidase[XOD], as a source and mechanism of oxygen radical production, plays an important role in the genesis of the reperfusion injury of ischemic myocardium. The experimental ischemic-reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min. Of global ischemia with aortic clamping followed by 20 min. of reperfusion with oxygenated Krebs-Henseleit solution[pH 7.4, 37*C]. The results were as follows: 1. The releases of creatine phosphokinase and a lipid peroxidation product, malondialdehyde[MDA] into the coronary effluent were abruptly increased upon reperfusion of ischemic hearts. The increases of the enzyme and MDA were suppressed significantly in the hearts removed from rats pretreated with allopurinol, a specific XOD inhibitor[20mg/kg, oral, 24 hrs and 2 hrs before study]. This effect of allopurinol was comparable to that of oxygen radical scavengers, superoxide dismutase[5, 000U] and catalase[12, 500 U]. 2. The increased SOD-inhibitable reduction of ferricytochrome C, which was infused to the hearts starting with reperfusion, was significantly suppressed in allopurinol pretreated hearts. 3. Activities of myocardial XOD were compared in the normal control hearts and the ischemic ones. Total enzyme activities were not different in both hearts. However, comparing with the control, the ischemic ones showed higher activity in 0-form and lower activities in D-form and D/O-form. 4. In the ischemic hearts, phenylmethylsulfonyl fluoride, a serine protease inhibitor, prevented significantly the increase of 0-form and the decreases of D and D/O-form, while thiol reagents did not affect the changes of the enzyme. 5. The increase of 0-form and the decreases of D and D/0-form were not significant in both calcium-free perfused and pimozide, a calmodulin inhibitor, treated ischemic hearts. 6. The SOD-inhibitable reduction of ferricytochrome C were suppressed by PMSF and pimozide treatment as well as by calcium-free perfusion. It is suggested from these results that in the ischemic rat myocardium, xanthine oxidase is converted to oxygen radical producing 0-form by calcium, calmodulin-dependent proteolysis and plays a contributing role in the genesis of ischemic-reperfusion injury by producing oxygen free radicals.

  • PDF

Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties

  • Aravinthan, Adithan;Kim, Jong Han;Antonisamy, Paulrayer;Kang, Chang-Won;Choi, Jonghee;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.206-212
    • /
    • 2015
  • Background: Ginseng total saponin (GTS) contains various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The aim of this study was to study the effects of GTS on cardiac injury after global ischemia and reperfusion (I/R) in isolated guinea pig hearts. Methods: Animals were subjected to normothermic ischemia for 60 minutes, followed by 120 minutes of reperfusion. GTS significantly increased aortic flow, coronary flow, and cardiac output. Moreover, GTS significantly increased left ventricular systolic pressure and the maximal rate of contraction ($+dP/dt_{max}$) and relaxation ($-dP/dt_{max}$). In addition, GTS has been shown to ameliorate electrocardiographic changes such as the QRS complex, QT interval, and RR interval. Results: GTS significantly suppressed the biochemical parameters (i.e., lactate dehydrogenase, creatine kinase-MB fraction, and cardiac troponin I levels) and normalized the oxidative stress markers (i.e., malondialdehyde, glutathione, and nitrite). In addition, GTS also markedly inhibits the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, and nuclear factor-${\kappa}B$, and improves the expression of IL-10 in cardiac tissue. Conclusion: These data indicate that GTS mitigates myocardial damage by modulating the biochemical and oxidative stress related to cardiac I/R injury.

NO 억제제가 허혈전처치의 심장 보호효과에 미치는 영향 (Effect of Inhibitor of Nitric Oxide Synthesis on the Ischemic Reconditioning in Isolated Heart of Rat.)

  • 유호진;조은용
    • Journal of Chest Surgery
    • /
    • 제29권8호
    • /
    • pp.807-815
    • /
    • 1996
  • 허혈전처치(ischemic preconditioniiIE)의 허혈심장 보호효과와 그 기전을 규명하기 위한 일환으로 citric oxide(HO)가 허혈전처치의 심보호 효과에 미치는 영향을 검토하였다. 흰쥐 적출심장의 Langendorrr관류표본에서 실험적인 허할(30분)-재관류(30분) 손상을 유도하였고, 허혈전처치는 재관류손상 유도 전에 5분 허혈 - 5분 재관류를 3회 반복하여 시행하였다. 허혈심근 손상의 지표로 심수축기능 세질효소 유출 및 미세형태학적 변화를, 그리고 HO 합성 억제제인 L-HAME 를 투여하여 허혈전처치와 비전처치 허혈-재관류 심장들에서 손상의 정도를 비교하였다. 그 결과 허혈- 재관류 심장에서 심기능의 저하및 세포질 유출이 현저하게 증가하였고 전자현미경상의 미세구조에서도 세포내 소기관 및 myofibril의 파괴가 관찰되 어 심근손상이 심함을 알 수 있었다. 허 혈-재관류에 의한 심 장손상은 허혈전처치를 시행한 허혈-재관류 심장에서는 현격하게 감소돼 심회복률이 77%로 증가하였 고 세포질유출도 현저하게 감소되었으며 미세소견에서도 세포구조가 비교적 잘 보존되었다. 허혈전처 치에 의한 심보호 효과에 NO가 관여하는지를 관찰하기 위하여 NO합성 억제제인 L-NAME를 투여하 여 허혈전처치를 시행하였다. 결과 L-UAME투여로 허혈전처치에 의하여 회복된 심기능 및 LDH유출 감소에 아무런 영향을 주지 않았고 허혈전처치에 의하여 비교적 잘 보존된 미세구조 역시 영향을 받지 않았다. 이상의 결과들로부터 허혈전처치는 세포수준에서 허혈심근의 재관류손상을 방지하며, NO합성의 증가가 횐쥐 적출 심장에서 허혈전처치에 의한 허혈심장 보호효과에 크게 기여하지 않을 것으로 사료되었다.

  • PDF