• Title/Summary/Keyword: Mycorrhizal fungi

Search Result 196, Processing Time 0.026 seconds

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Trap Culture Technique for Propagation of Arbuscular Mycorrhizal Fungi using Different Host Plants

  • Selvakumar, Gopal;Kim, Kiyoon;Walitang, Denver;Chanratana, Mak;Kang, Yeongyeong;Chung, Bongnam;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.608-613
    • /
    • 2016
  • Arbuscular mycorrhizal fungi (AMF) spore propagation and long term maintenance is still a complicated technique for farmers. The use of AMF for their ability to promote plant growth and protect plants against pathogen attack and environmental stresses demands AMF propagation for large scale application. This study aimed to propagate AMF spores by trap culture technique and assess their ability to propagate with different host plants in a continuous plant cycle. Mycorrhizal inoculation by trap culture in maize resulted in longer shoots and roots than sudangrass plants. Increase in dry weight with higher percentage also was observed for maize plants. After first and second plant cycle, maize plants had the higher percentage of mycorrhizal response in terms of colonization and arbuscules than sudangrass. Maximum in spore count also achieved in the pots of maize plants. The results show that maize plant is more suitable host plant for AMF spore propagation and trap culture technique can be used effectively to maintain the AMF culture for long time.

Effects of Organic Farming on Communities of Arbuscular Mycorrhizal Fungi

  • Lee, Si-Woo;Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential.

Interactions of Newly Isolated Orchid Mycorrhizal Fungi with Korean Cymbidium kanran Hybrid 'Chungsu'

  • Lee, Jun-Ki;Lee, Sang-Sun;Eom, Ahn-Heum;Paek, Kee-Yoeup
    • Mycobiology
    • /
    • v.31 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • Two fungal isolates obtained from roots of Cymbidium goeriingii in Jeju island were confirmed to be symbiotic with orchid plantlets, and were compared with other orchid mycorrhizal(OM) fungi previously isolated. The two isolates differed in their peloton structures formed in the roots of Cymbidium kanran hybrid 'Chungsu' and in responses of orchid plant. These two isolates differed from the additionally tested OM fungi in some features, and from root damaging species of Rhizoctonia and Fusarium as based on cluster analysis after PCR-RAPD with the primers, Bioneer-28 and OPO-2. With this simple and fast technique, it was possible to distinguish OM fungi from the plant root pathogenic fungi based on calculation of their polymorphic bands. This technique can therefore be helpful to distinguish the OM fungi from the root pathogens. Particularly, the new isolates are considered as new resource of symbiotic fungi for horticultural industries.

Differences among Endophytic Fungal Communities Isolated from the Roots of Cephalanthera longibracteata Collected from Different Sites in Korea

  • Lee, Bong-Hyung;Kwon, Woo-Jin;Kim, Jin-Young;Park, Jin-Seo;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.312-317
    • /
    • 2017
  • Orchidaceous plants have symbiotic relationships with endophytic fungi, including mycorrhizal fungi, which play important roles in the seed germination and growth of the host plants. In this study, endophytic fungal communities isolated from the roots of Cephalanthera longibracteata collected from three different sites in Korea were analyzed, and it was determined whether fungal communities were preferentially correlated with the sites. The fungal isolates were identified by sequence analysis of the internal transcribed spacer regions of rDNA. In total, 30 species of endophytic fungi, including two species of mycorrhizal fungi belonging to the genus Tulasnella, were identified. Leptodontidium orchidicola showed the highest frequency and was isolated from all root samples. Species diversity and richness were not significantly different among sites. However, the community structure of the endophytic fungi significantly differed among sites, suggesting that the site characteristics affected the community composition of the endophytic fungi colonizing the roots of C. longibracteata. Our findings will aid in developing methods involving the use of symbiotic fungi for orchid conservation and restoration in native habitats.

Community Structure of Arbuscular Mycorrhizal Fungi in the Islands of Chungnam, Korea (충남 섬 지역 근권 토양의 수지상균근균 군집 구조)

  • Lee, Jeong-Youn;Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • Five islands (Sinjindo, Mado, Daenanjido, Wonsando, and Sapsido) and the coastal area (Muchangpo) in Chungnam, Korea, were selected to determine the diversity of arbuscular mycorrhizal (AM) fungi. Soil-inhabiting AM fungi were isolated and identified on the basis of morphological characteristics and sequence analyses of 18s rDNA. The differences in the fungal community structures were compared among sites. As a result, 24 species of AM fungi were identified, of which two species of AM fungi, Acaulospora brasiliensis and Redeckera fulvum, were isolated for the first time in Korea. This study revealed that AM fungal spore abundance was low and the genus Acaulospora was dominant in most of the islands. AM fungal community structures in five Islands were highly similar. However, the coastal area, Muchangpo, had different AM fungal community structure from the islands.

Molecular Identification of Orchid Mycorrhizal Fungi of Native Orchids in Ulleung Island (울릉도의 자생란과 공생하는 난균근균의 분자생물학적 동정)

  • Youm, Jae-Young;Chung, Jae-Min;Lee, Byung-Chun;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.7-10
    • /
    • 2011
  • Orchid mycorrhizal fungi (OMF) were examined in roots of the six terrestrial species of orchids collected in Ulleung Islands. Seven OMF isolates from the roots of orchids were identified based on morphological and molecular characters. Internal transcribed spacer region of OMF DNA was amplified using basidiomycete-specific ITS primers, ITS1-OF and ITS4-OF. OMF beloning to Tulasnellaceae and Ceratobasidaceae was identified through molecular analysis.

Identification of Orchid Mycorrhizal Fungi Isolated from Epipactis thunbergii in Korea (닭의난초(Epipactis thunbergii)에 공생하는 난 균근균의 분리 및 동정)

  • Han, Han-Kyeol;Chung, Jae-Min;Cho, Yong-Chan;Kim, Dae-Shin;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • In this study, roots of Epipactis thunbergii were collected from Chujado on the north of Jeju-do. Six fungal isolates were isolated from surface-sterilized roots of the orchid and classified with groups based on morphological characteristics. Fungal DNA was extracted from each isolate and amplified ITS region using ITS1-OF/ITS4-OF primer pair. Three species of orchid mycorrhizal fungi were identified as Tulasnella calospora, Tulasnella sp. and Sebacina sp. based on molecular and morphological characteristics.

Seasonal Dynamics of Arbuscular Mycorrhizal Fungi (AMF) in Forest Trees of Chittagong University Campus in Bangladesh

  • Nandi, Rajasree;Mridha, M.A.U.;Bhuiyan, Md. Kalimuddin
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.277-284
    • /
    • 2014
  • Status of Arbuscular Mycorrhizal (AM) colonization in seven tree species (Albizia saman, Acacia auriculiformis A. Cunn. ex Benth., Albizia lebbeck, Chickrassia tabularis A. Juss., Eucalyptus camaldulensis Dehnn., Gmelina arborea (Roxb) DC, Swietenia macrophylla King.) collected from the hilly areas of Chittagong University (CU) was investigated. Roots and rhizosphere soil samples were collected in different seasons (pre-monsoon, monsoon and post monsoon). Percentage of AM colonization in root and number of spores/100 gm dry soil were assessed. The result of the investigation reveals that the intensity and percentage of AM colonization varied in different forest tree species in different seasons. In this study, maximum AM colonization and spore population were found in pre-monsoon and minimum were in monsoon season. The intensity of colonization was maximum in C. tabularis (74.43%) in pre-monsoon, A. lebbeck (69.45%) in monsoon and S. macrophylla (67.8%) in post monsoon seasons and minimum in A. auriculiformis (53.75%) during pre-monsoon, A. saman (24.4%) in monsoon and A. saman (19.36%) in post monsoon. The number of spores found per 100 g dry soil ranged between 164-376 during pre-monsoon, 27-310 during monsoon and 194-299 in post monsoon season. Out of six recognized genera of AM fungi, Glomus, Sclerocystis, Entrophospora, Scutellospora, Acaulospora and other unidentified spores were observed.

Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems

  • Lee, Eun-Hwa;Eo, Ju-Kyeong;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.121-125
    • /
    • 2013
  • Arbuscular mycorrhizal fungi (AMF) have mutualistic relationships with more than 80% of terrestrial plant species. This symbiotic relationship is ancient and would have had important roles in establishment of plants on land. Despite their abundance and wide range of relationship with plant species, AMF have shown low species diversity. However, molecular studies have suggested that diversity of these fungi may be much higher, and genetic variation of AMF is very high within a species and even within a single spore. Despite low diversity and lack of host specificity, various functions have been associated with plant growth responses to arbuscular mycorrhizal fungal colonization. In addition, different community composition of AMF affects plants differently, and plays a potential role in ecosystem variability and productivity. AMF have high functional diversity because different combinations of host plants and AMF have different effects on the various aspects of symbiosis. Consequently, recent studies have focused on the different functions of AMF according to their genetic resource and their roles in ecosystem functioning. This review summarizes taxonomic, genetic, and functional diversities of AMF and their roles in natural ecosystems.