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Abstract Arbuscular mycorrhizal fungi (AMF) have mutualistic relationships with more than 80% of terrestrial plant species. This
symbiotic relationship is ancient and would have had important roles in establishment of plants on land. Despite their abundance
and wide range of relationship with plant species, AMF have shown low species diversity. However, molecular studies have
suggested that diversity of these fungi may be much higher, and genetic variation of AMF is very high within a species and even
within a single spore. Despite low diversity and lack of host specificity, various functions have been associated with plant growth
responses to arbuscular mycorrhizal fungal colonization. In addition, different community composition of AMF affects plants
differently, and plays a potential role in ecosystem variability and productivity. AMF have high functional diversity because
different combinations of host plants and AMF have different effects on the various aspects of symbiosis. Consequently, recent
studies have focused on the different functions of AMF according to their genetic resource and their roles in ecosystem
functioning. This review summarizes taxonomic, genetic, and functional diversities of AMF and their roles in natural ecosystems.
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Arbuscular mycorrhizal fungi (AMF) have mutualistic
relationships with more than 80% of terrestrial plant
species, from bryophytes to tracheophytes [1]. This symbiotic
relationship is believed to have formed approximately 460
million years ago and would have had important roles in
establishment of plants on land [2]. AMF produces highly
branched fungal structures, arbuscules, within root cortical
cells of their host plants, with which they exchange inorganic
minerals, especially phosphorus and carbon compounds
[1]. AMF are one of the most abundant organisms in the
rhizosphere and the relationships can be found within a
broad range of more than 200,000 species of host plants.
Despite their abundance and wide range of relationship
with plant species, AMF have been known to show low

species diversity and only approximately 240 species have
been described within a fungal phylum, Glomeromycota,
on the basis of morphology [3-5]. However, molecular studies
have suggested that diversity of these fungi may be much
greater [6]. In addition, high genetic variation of AMF has
been reported within species, even within a single AMF
spore [7, 8], and affects various important functions such
as colonization rates, growth of extra-radical hyphae, and
phosphorus uptake of AMF [9-12].

Most AMF successfully colonize a large number of host
plant species, indicating lack of host specificity [1]. Due to
the low species diversity and lack of host specificity of AMF,
it has been assumed that AMF are functionally unnecessary
[13] and the functional roles of AMF in ecosystems have
been ignored. However, a variety of functions associated
with plant growth responses to arbuscular mycorrhizal (AM)
fungal colonization, not only phosphorus uptake, have
been reported [10, 14, 15]. In addition, there is evidence
indicating that differences in community composition of
AMF may have different effects in plants, and play a potential
role in determining plant diversity, ecosystem variability,
and productivity. These studies have indicated high functional
diversity of AMF because different combinations of host
plant and AMF have different effects on various aspects of
symbiosis. Consequently, recent studies have focused on
the different functions of AMF according to their genetic
resource and their roles in ecosystem functioning. This
review provides a summary of recent studies of functional
diversity of AMF and their roles in natural ecosystems.
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TAXONOMIC DIVERSITY OF AMF

Fossil records and molecular data suggest that AM symbiosis
is evolutionary ancient and that it occurred with the first
terrestrial plants. However, species diversity of AMF is low,
with only approximately 240 recognized species [3, 5],
although molecular studies have suggested the existence
of a significantly larger number of species [16]. It was
suggested that low diversity in AMF is characteristic for
mutualistic symbiosis because there is low selection pressure
for speciation in the fungal partner [17].

Traditionally, the taxonomy of AMF has been based on
the morphological characteristics of spores produced in
soil features, including size, color, and various layers of the
cell wall [18, 19]. However, AMF spores have simple
structures with only a few morphological characteristics. In
addition, spores collected from field soil are not in original
condition, and several species of AMF may not produce
spores under controlled conditions. These problems of
morphological identification of AMF allow species identity
to be determined only by experts and have obstructed
ecological studies as well as systematics of AMF.

AMF have been placed within six genera of an order
Glomales (Zygomycota) using phylogenetic analysis, using
morphological characteristics [19]. However, sequence
analysis of ribosomal RNA showed that all AMF species
are included in a monophyletic clade and separated from
all major fungal groups. In addition, it was so diverse
within the group that all AMF species were placed into a
new phylum, the Glomeromycota [4]. In a recent study,
Krüger et al. [5] analyzed sequences of 136 species of AMF,
including 27 undescribed species, and suggested that the
number of described species was definitely underestimated.
The region of small subunit (SSU) rDNA has been most
widely used for phylogenetic sequence analysis for AMF,
because intraspecific variation of the internal transcribed
spacer region rDNA, which is generally used for identification
and barcoding fungal species, is too high to be used in
distinguishing species in AMF [20, 21]. However, use of
SSU rDNA could also underestimate real diversity of
Glomeromycota [22]. Thus, information from sequences,
such as large subunit (LSU) and β-tubulin, would be required
for better understanding of actual diversity of AMF [3, 23, 24].

Ecological studies of AMF have also relied on spores
collected from soil. However, spore data collected from soil
do not necessarily reflect the actual diversity and functionally
active AMF colonizing plant roots. Therefore, identification
of AMF species within plant roots is critical for their
ecological study. However, identification of AMF hyphae to
species level within roots using morphological features is
not possible. In addition, due to the complex root systems,
it is not possible to distinguish active symbionts of AMF
in an individual plant from spore communities in soil.
Development of suitable primers and protocols has enabled
identification of AMF within plant roots. Specific PCR
primers have been developed for all AMF lineages for use

in PCR [25-27], and the LSU sequences were used for
identification of AMF and for construction of a more
accurate system [28-30].

GENETIC DIVERSITY OF AMF

Species diversity is an important factor affecting biodiversity
and productivity of ecosystems [31]. Recently, molecular
based methods in AMF studies have enabled direct
identification of AM fungal species in plant roots or in
soils, and it was revealed that actual AMF diversity in
ecosystems could be higher than expected [22, 28]. In
addition, DNA polymorphism within AM fungal isolates
by different geographic origin, even within a single spore,
was identified by use of molecular techniques [7, 20]. These
findings incited an argument regarding the cause of genetic
variation in AMF and their role in ecosystems.

Genetic diversity within species or among isolates
originated from the genetic structure of AMF. Hundreds or
thousands of nuclei exist together within a single spore or
hypha of AMF, meaning that the genetic structure of
AMF is ‘multi genomic’ [32]. Sanders et al. [20] identified
intraspecific polymorphisms in the rDNA region within a
single spore [20]. There has been debate regarding the
genetic characteristics of nuclei in a spore or hypha. However,
evidence supports that each nucleus within a single spore
was not genetically identical and that genetic variation is
inherited in an individual nucleus, and is not shared by
nuclei [32, 33].

Despite recognition of the importance of genetic diversity
of AMF, little is known about its role in ecosystems. Recent
experimental evidence indicating that genetically different
AM fungal isolates could differ in their ability of survival
or functionality on their host plants [34] supports that genetic
variation increases diversity of AM fungal communities
more than expected. Although the roles of genetic variation
in AM fungal communities and ecosystems are not yet
clearly understood, the genetic variation offers the possibility
of functional diversity of AMF in ecosystems. It is clear
that genetically different AM fungal isolates, even from the
same species, have different effects on their host plants [10,
35]. More studies on genetic variation within or among
AMF species should be conducted for better understanding
of the roles of functional diversity of AMF in ecosystems.

FUNCTIONAL DIVERSITY OF AMF

The function of mycorrhizal symbiosis could vary significantly
between fungal species and even between isolates within a
species [1]. Functional diversity of AMF can often refer to
a variety of functions associated with plant growth responses
to AM fungal colonization [36]. Although the mechanisms
causing the functional diversity are still uncertain, involvement
of the exchange of phosphorus and photosynthate between
plants and AMF is evident [37].

The measure of symbiotic efficiency between host plants
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and AMF is complex [38]. It can be defined as the amount
of carbon gained by a growth response from the symbiotic
relationship with AMF minus the amount of carbon lost
by investment in maintaining the symbiotic relationship. In
most cases, AMF inoculation promotes plant growth, but
not always. On the contrary, some isolates of AMF can
decrease the biomass of the host plant [1]. Recent studies
have reported that the efficiency of AM symbiosis could
differ according to the genotype of the two partners, host
plants and AMF, as well as the combination of the partners
[10, 11, 14]. Croll et al. [12] reported a strong preference
for AM fungal genotype by host plants in his experiment.
In addition, functional differences by genotype among
AMF isolates for host plants were identified by Angelard et
al. [9], who used genetically different AMF isolates, G.
intraradices, to promote the growth of rice and found that
specific AM fungal genotype could increase the biomass of
rice up to five times compared with other isolates.

The specific AMF genotype affects host plants by different
functionality, including spread of extraradical mycelia,
efficiency of nutrient absorption, and mycorrhizal-specific
gene expression, and causes different growth responses in
host plants. The extraradical mycelium of AMF absorbs
the mineral nutrients from soil and transports them to the
host plant. However, the capacity of the mycelium to spread,
and the viability, structure, and possibility of anastomosis
might vary among AMF genotypes, even among those
collected from the same origin [39-41]. In addition, it is
known that there are differences in ability to take up and
supply phosphorus and nitrogen to plants even within AMF
species, caused by the expression levels of P-transporter
and N-assimilation genes [42, 43].

Use of molecular method-based studies has enabled a
clearer understanding of mycorrhiza-specific genes, expressed
in the early stage after inoculation. In different AMF taxa,
a similar gene expression pattern was identified in a set of
nutrient-transport related genes in early stages of infection,
and Liu et al. [44] reported a similar gene expression
pattern in an AMF-related gene set in different plant taxa.
However, Hohnjec et al. [45] reported that the gene
expression pattern was similar in infections by two AMF
species but that some genes were expressed more in
specific host plants, meaning that mycorrhizae-specific
gene expression was affected by the combination of host
plant and AMF species [45].

Finally, the continuous signal exchange between AMF
and host plant is important to completion of their life cycle
from colonizing roots to sporulation in soils [46, 47].
Genetic variation caused by the composition of hyphal nuclei
is important in mutual recognition of AM symbiosis. In
addition, genetically different isolates of AMF could affect
colonization strategy and mycorrhizal morphology of the
plant.

Although AMF species diversity is lower than that of other
fungal taxa, its effects on growth and structure of plant
communities are very diverse. Thus, when considering the

many causes that lead to the actual diversity of AMF in
ecosystems, the functional differences among AMF species
or isolates cannot be simply measured as shown.

ECOLOGICAL ROLES OF AMF DIVERSITY

AMF are distributed among a variety of environments as
symbionts with plants from sub-polar to tropical latitudes
and from swamps in low lands to mountainous areas of
high elevation [48]. The host plants offer carbon compounds
to AMF (approximately 20% of photosynthate) in exchange
for inorganic minerals and protection against environmental
stresses from AMF [1]. AMF play an important role in
phosphorous absorption [49], circulation of nitrogen in
ecosystems [43], tolerance to heavy metals and saline
conditions [50], and increasing protection from nematodes
and root diseases in the rhizosphere [51, 52].

Rhizospheres with AMF have very dense hyphal networks,
akin to extended roots, which occupy an extensive biomass
[53]. Although AMF have low host specificity in their
symbioses with plants, they share hyphal networks with
different host plants and affect not only a single plant
species but also populations and plant species composition.
Despite wide distribution and abundance of AMF in various
environments as well as a broad range of relationship with
most land plants, species diversity of AMF is low. However,
molecular evidence has shown that the diversity would be
much higher in ecosystems than expected. In addition,
differences in functionality between AM fungal isolates
could complement species diversity of AMF by changing
the functional units interacting with plants from species to
genotype. In such a point of view, we need a novel ecological
concept of AMF from decomposer to producer or assistant
producer of plants, increasing productivity and fitness of
plants in ecosystems, not restricted in conventional view of
fungi.

CONCLUSION

AMF are the most abundant symbionts in ecosystems. They
are adapted to various environments and have symbiotic
relationships with more than 200,000 plant species; however,
only about 240 species have been described to date. This
means that morphological diversity of AMF spores is not
sufficient to reveal actual diversity of the fungi in ecosystems.
Use of molecular techniques in studies of AMF has led to a
significant increase in taxonomic diversity and studies have
indicated high genetic diversity within a population and
even within a single spore. Functional diversity by the
combination of host plant and AMF results from the
genetic structure of AMF, which is multi-genomic and
composed of hundreds or thousands of nuclei with different
genetic composition. The genetic variation of nuclei in a
single spore affects genetic diversity at the population level
and it could increase the functional diversity of AMF in
ecosystems.
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Experimental evidence supports that genetically different
AMF isolates, even within species, could have different
effects on host-plant growth. AMF are regarded as the
most widespread microorganisms in soil, except in sterile
or contaminated sites where plants cannot survive. They
contribute to nutrient cycling (e.g., the N cycle) in ecosystems
and improve soil conditions through soil aggregation and
increasing the nutrient uptake of plants. However, the
taxonomic species diversity of AMF reflects only a small
part of AM fungal diversity in actual ecosystems compared
with their functional diversity. The characteristics of AMF
related to host-plant selection, rapid adaptation to various
environments, and functional differences in growth response
in host plants could be understood when the genetic
diversity of AMF and their roles have been more clearly
determined.
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