• Title/Summary/Keyword: Mutual induction

Search Result 53, Processing Time 0.036 seconds

Analysis of Distance between ATS and ATP Antenna for Normal Operation in Combined On-board Signal System

  • Kim, Minseok;Kim, Minkyu;Kim, Doogyum;Lee, Jongwoo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Railroad signaling systems are to control intervals and routes of trains. There are ATS, ATP, ATO and ATC system. Trains are operated in the section which is met on the signaling system because various signaling systems are used in Korea. Hence, trains are not operated in the section which is used in the other signaling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system designed by doubling the ATS, ATP and ATC system to ensure the safety of system. The inductance of antenna is change and in return the resonance frequency of antenna is varied by the electromagnetic induction. Therefore, the information signal is not received exactly in the combined on-board system and in return accidents between trains occur. In this paper, electric model of the combined on-board system for considering the ATS and ATP antenna is presented. Moreover, the mutual inductance including the distance between the ATS and ATP antenna is calculated. As a result of the frequency response of the antennas, the mutual inductance met on operation range of resonance frequency is defined.

A Sensorless Vector Control System for Induction Motors Using Stator Current Difference

  • Park, Chul-Woo;Choi, Byeong-Tae;Kwon, Woo-Hyen;Ku, Bon-Ho;Youn, Kyung-Sub
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.139.4-139
    • /
    • 2001
  • The thesis propose the sensorless vector control method that estimates the rotor speed using stator current. The estimated speed is used as feedback in a vector control system. The conventional MRAS structure has a problem the error output is decreasing as estimated speed error is increasing and the estimation performance is not robust when mutual inductance has been changed. In the proposed method, error output is proportional to estimated speed error. The described technique is less complex, robust to variations of mutual inductance. This new method can achieve much wider bandwidth speed control than that of the conventional MRAS structure.

  • PDF

The analysis of IPT transformer by winding structures (권선구조에 따른 IPT transformer 해석)

  • Han, Kyung-Hee;Lee, Byung-Song;Kwon, Sam-Young;Park, Hyun-Jun;Baek, Soo-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.916-921
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the electric railway vehicle system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance. And also, effect of leakage inductance variation of inductive power collector according to structure of winding was considered.

  • PDF

The characteristic of IPT system used for PRT vehicle by various air-gap (공극변화에 따른 소형궤도차량 유도전력급전 시스템의 특성)

  • Han, K.H.;Lee, B.S.;Baek, S.H.;Kwon, S.Y.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1087-1088
    • /
    • 2006
  • In this paper, the inductive power collector using electromagnetic Induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance.

  • PDF

The analysis of IPT transformer by winding structures (권선형상에 따른 유도전력공급장치 특성해석)

  • Han, K.H.;Lee, B.S.;Kwon, S.Y.;Park, H.J.;Lee, H.W.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1259-1260
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the electric railway vehicle system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The inductive power of secondary part is related to amount of linked flux to secondary part by the length of air-gap, which is expected by such a system parameter as mutual inductance. This paper will study for the transfer characteristic of power from input to output and equation including mutual inductance. And also, effect of leakage inductance variation of inductive power collector according to structure of winding was considered.

  • PDF

Transient Voltage Characteristic of Self-excited Induction Generator by State Equation (상태방정식에 의한 자기여자 유도발전기의 과도전압특성)

  • Kim, Do-Jin;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.882-884
    • /
    • 2002
  • The transient voltage characteristics of capacitor self-exited induction generator are analyzed by the state equation which is obtained from the d-q axis equivalent circuit of stationary reference frame and torque equation. The d-q equivalent circuit is composed using the condition of stationary reference frame. The mutual inductance is only considered as a function of magnetizing current in the equivalent circuit. The characteristics are analyzed and discussed by the backward Euler method for various load conditions under specified initial conditions and input.

  • PDF

A Speed Sensorless Vector Control Using the Zero Sequence Third Harmonic Voltages (영상부 3고조파를 이용한 유도전동기의 속도센서없는 벡터제어)

  • 최정수;유완식;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.388-394
    • /
    • 1998
  • In this paper, we propose a speed sensorless control of the saturated induction motor using the zero sequence third harmonic voltages and a compensation method of the stator resistance variations. The air-gap flux of the saturated induction motor contains the space harmonic components rorating synchronous frequency. As a function of the air-gap flux saturation, the dominant third harmonic voltage is used to compensate the non-linear variations of the mutual inductance depending on the saturation level of the motor. and also the stator resistance variations can be measured with the phase angle between the voltage vector and the zero sequencial voltages. The validity of the proposed compensation scheme in the speed sensorless control using rotor flux observer is verified by simulations.

  • PDF

DECOUPLING CONTROL OF AN INDUCTION MOTOR WITH RECURSIVE ADAPTATION OF ROTOR RESISTANCE

  • Kim, Gyu-Sik;Kim, Jae-Yoon;Yim, Chung-Hyuk;Kim, Joohn-Sheok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.23-28
    • /
    • 1998
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. Among them, rotor resistance varies greatly with machine temperature. A new recursive adaptation algorithm for rotor resistance which can be applied to our nonlinear feedback controller is also presented in this paper. The recursive adaptation algorithm makes the estimated value of rotor resistance track its real value. Some simulation results show that the adaptation algorithm for rotor resistance is robust against the variation of stator resistance and mutual inductance. In addition, it is computationally simple and has small estimation errors. To demonstrate the practical significance of our results, we present some experimental results.

  • PDF

A study on the characteristics of difference arrow using three-dimensional MT(Magneto-Telluric) modeling (3차원 전도체의 공간적 위치 및 크기에 따른 차이 지시자의 특성 연구)

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 2002
  • The three-dimensional MT(Magneto-Telluric) modeling is performed to examine the validity of difference arrow of GDS(Geomagnetic Depth Sounding) survey, In this paper, we investigate the validity of the difference arrow on three configurations of conductors; which is located 1) at surface, 2) at the deep part and 3) vertically extended f개m surface to the deep part, respectively, For conductors located at surface, the validity of difference arrows is certified in our numerical model when long periods over 40 minutes are used or the distance between sea and conductor is over 150 km. However, for conductors located at the deep part, the validity of difference arrow is dependent on the size of conductors. Further, if the size of conductor is adequately larger than that of our model, we recognize the possibility that the mutual coupling of them influences up to longer periods, Moreover, in case of conductors which is vertically extended from surface to the deer part, the mutual coupling of them is reinforced for all periods, especially for longer periods, so that the validity of difference arrow is considerably in doubt. Therefore, to remove the known conductor effect such as the sea effect from the observed induction arrow, the mutual coupling between them must be examined. The difference arrow that certifies the validity in this way can only provide the Subsurface information based on physical supports.

  • PDF

Modeling of 3-stage Electromagnetic Induction Launcher

  • Kwak, Daehwan;Kim, Young Bae;Kim, Jong Soo;Cho, Chuhyun;Yang, Kyung-Seung;Kim, Seong-Ho;Lee, Byung-Ha;An, Sanghyuk;Lee, Young-Hyun;Yoon, Seok Han;Koo, In Su;Baik, Yong Gi;Jin, Yun Sik
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • Electromagnetic Induction Launchers (EIL) have been receiving great attention due to their advantages of non-contact between the coils and a projectile. This paper describes the modeling and design of 3-stage EIL to accelerate a copper projectile of 50 kg with 290 mm diameter. Our EIL consists of three independent driving coils and pulsed power modules to generate separate driving currents. To find efficient acceleration conditions, the appropriate shape of the driving coils and the position of the projectile have been calculated by using a finite element analysis (FEA) method. The results showed that the projectile can be accelerated more effectively as the gap between the coils is smaller; a final velocity of 45 m/s was obtained. The acceleration efficiency was estimated to be 23.4% when a total electrical energy of 216 kJ was discharged.