• Title/Summary/Keyword: Mutant strain

Search Result 689, Processing Time 0.029 seconds

Alginic acid production of azotobacter vinelandii (Azotobacter vinelandii의 알긴산에 관한 연구)

  • 임미혜;이호용;장성렬;최영길
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.124-129
    • /
    • 1989
  • In order to improve the production of bacterial alginate, Azotobacter vinelandii NCIB 8789 was treated with 200.$\mu$g/ml of MNNG for obtaining mutant strain. The mutant HB18 was selected, which produced the highest amount of alginic acid among the survival stains. The HB18 produced 5.4g/l of alginic acid when batch cultured at $30^{\circ}C$ for 160 hrs and its alginic acid showed high molecular weight and simple composition when compared with thoseof wild type.

  • PDF

Secretory production of prosubtilisin YaB by a six extracellular protease-deficient mutant of Bacillus subtilis

  • Byun, Dae-Seok;Chang, Young-Chae;Kang, Myung-Hwa
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2001
  • Subtilisin YaB, produced by alkalophilic Bacillus strain YaB, is an extracellular alkaline serine protease having 55% homology to subtilisin BPN'. It is synthesized as a 378-amino acid preproenzyme and secreted into the culture medium as a 265-amino acid mature protease. To examine the role of pro-sequence for the secretion of subtilisin YaB, we have studied the expression, in Bacillus subtilis, of a mutant preprosubtilisin YaB in which active site Ser214 is substituted with Cys. The use of a six protease-deficient strain, WB600, was required for its efficient production. The prosubtilisin YaB, thus produced, was indeed secreted into the culture medium and was processed to its mature form upon treatment with exogenously added active subtilisin YaB. From these results, we have concluded that the processing of pro-sequence is not essential for the secretion of the enzyme.

  • PDF

Potential Swimming Motility Variation by AcrR in Escherichia coliS

  • Kim, Ye Jin;Im, So Young;Lee, Jae Ok;Kim, Ok Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1824-1828
    • /
    • 2016
  • AcrR, the toxic-compounds-response regulator, regulates motility in microorganisms, presumably to escape from toxic environments. In this study, the genome-wide target genes of AcrR were investigated in a ΔacrR mutant strain by microarray analysis. In the absence of AcrR, the transcription of most flagella/motility genes was highly increased. In addition, flagella formation was increased in this mutant strain. Motility assays revealed that AcrR modulates swimming motility, but not swarming.

Studies on the Mechanism of Resistance to and Mode of Action of Viomycin in Mycobacterium smegmatis (Mycobacterium smegmatis를 이용한 Viomycin의 내성 및 작용 기전에 관한 연구)

  • 최응칠
    • YAKHAK HOEJI
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1980
  • Viomycin inhibited polypeptide biosynthesis, initiation complex formation and translocation of peptidyl-tRNA on ribosomes derived from a sensitive strain of Mycobacterium smegmatis (R-15), but not significantly on ribosomes from viomycin-resistant mutants(R-31 and R-43). The inhibition of translocation was stronger than that of initiation complex formation in the sensitive strain. The binding of [$^{14}C$] tuberactinomycin O, a viomycin analog, to ribosomal particles was studied by Millipore filter method. The sensitive ribosome exhibited higher affinity for the antibiotic than the resistant ribosomes. The resistance was localized on the large ribosomal subunit in a mutant(R-31), and on the small subunit in another mutant(R-43). The binding of the drug to the sensitive ribosomal subunit was markedly reduced by combination with the resistant pair subunit, and the entire ribosome became resistant to the antibiotic.

  • PDF

Molecular Cloning and Expression of Genes Related to Antifungal Activities from Enterobacter sp. B54 Antagonistic to Phytophthora capsici

  • YOON, SANG-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.352-357
    • /
    • 1999
  • Enterobacter sp. B54 inhibited growth of the fungus Phytophthora capsici on potato dextrose agar (PDA). Three mutants with antifungal activities (denoted M54-47, M54-113, and M54-329) which were lost or increased, through Pl::Tn5 lac mutagenesis, were used to isolate genes responsible for fungal inhibition on PDA. Two clones were selected from the partially EcoR1-digested genomic library of the wild-type strain by probing with genomic flanking sequences of each mutant. We have isolated a 20-kb EcoR1 genomic DNA fragment from this strain that contains genes involved in hyphal growth inhibition of P. capsici on PDA. Subcloning and expression analysis of the above DNA fragment identified a 8-kb region which was necessary for antifungal activities. A 8-kb HindⅢDNA fragment covers three genomic loci inserted by Tn5 lac in each mutant. This suggested that all genes which are related to antifungal activities might be clustered in simple forms of at least 5-8 kb sizes.

  • PDF

Production of Killer Toxin from a Mutant of Hansenular capsulata S-13 (Hansenular capsulata S-13의 변이주에 의한 Killer Toxin의생산)

  • 김재호;김나미;이종수
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.2
    • /
    • pp.158-163
    • /
    • 2000
  • Killer yeast, Hansenular capsulata S-13 were treated with heat, ethylmethane sulfonate and N-methyl-n'-nitro-n-nitrosoguanidine and a mutant(S13-E1), showing 2-fold higher killer toxin activity than that of parent strain to killer sensitive strain, Saccharomyces cerevisiae ATCC 38026 was obtained. Hansenular capsulata S13-E1 showed strong killer toxin activity to Saccharmyces mellis and Saccharomyces sal년 and four strains of gas-producing yeasts from traditional Doenjang and Kochujang. The culture condition for killer toxin production by Hansenular capsulata S13-E1 was optimized to be 1.0% potato extract, each 0.5% of peptone and glucose, and 0.025% MgSO4 with initial pH 4.5 at 3$0^{\circ}C$ and 36 hr of batch cultivation.

  • PDF

Insect Ornithine Decarboxylase (ODC) Complements SPE1 Knock-Out of Yeast Saccharomyces cerevisiae

  • Choi, Soon-Yong;Park, Hee Yun;Paek, Aron;Kim, Gil Seob;Jeong, Seong Eun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.575-581
    • /
    • 2009
  • Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyamine-free media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system.

Isolation of $\alpha$-Amylase Hyperproducing Strain HG4 from Bacillus sp. and Some Properties of the Enzyme ($\alpha$-Amylase 생산성이 높은 Bacillus sp. HG4의 분리 및 효소 특성)

  • 김무성;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.464-469
    • /
    • 1991
  • An $\alpha$-amylase producing bacterium, strain 2B, was isolated from soil and identified to genus Bacillus. To enhance $\alpha$-amylase productivity, strain 2B was mutagenized successively with nitrosoguanidine. For an efficient selection of a-amylase hyperproducers, mutants which produced $\alpha$-amylase in the presence of glucose were isolated. The resultant mutant HG4, which was classified as constitutive and catabolite derepressed hyperproducer of a-amylase, produced about 30 folds more $\alpha$-amylase than parental strain in medium containing lactose as carbon source. The strain HG4 grew rapidly and produced enzyme in parallel with cell growth. Moreover, its cell lysis did not occur until time of maximal yield of enzyme, which was considered to be a favorable characteristic for the production and purificiation of enzyme in industrial scale. The enzymatic properties of parental strain 2B and mutant strain HG4 were almost the same. The optimal temperature and pH for enzyme reaction was $70^{\circ}C$ and pH 6.0, respectively, in 'the presence of 0.6mM $Ca^[2+}$ as an effective stabilizer.

  • PDF

THE SUSCEPTIBILITY OF SCALELESS MUTANT CHICKENS TO VERY VIRULENT MAREK'S DISEASE VIRUS

  • Lin, J.A.;Liu Tai, J.J.;Lu, Y.S.;Liou, P.P.;Tai, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.679-684
    • /
    • 1996
  • This study evaluates the susceptibility of scaleless mutant chickens to very virulent Marek's disease virus (vvMDV) inoculation. One day old chickens were inoculated subcutaneously with Taiwanese isolates of LTB-1 and LTS-1 strains, and standard strain of Md/5. Compared with the non-inoculated group the vvMDV-inoculated chickens showed decreased body weights and atrophy of lymphoid organs before 35 days old. These results indicate that scaleless chickens show the same susceptibility as the wild type chickens to vvMDV infection. Furthermore, the protective effect of herpesvirus of turkey (HVT) vaccination at 1 day old against vvMDV challenge was evaluated. Scaleless mutant chickens of treated groups showed 20-30% early death, and 85.7-100% and 12.5-14.2% had lymphomatous lesions in visceral organs and peripheral nerves, respectively. No significant lesions were observed in non-challenged chickens of the control group. The HVT vaccination did not provide an effective protection against vvMDV infection. It is concluded that scaleless mutant chickens are susceptible to vvMDV infection.

Phycobilisome composition in Chondrus crispus (Gigartinales, Rhodophyta) from a wild type strain and its vegetatively derived green mutant

  • Cornish, M. Lynn;O' Leary, Stephen J.B.;Garbary, David J.
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.121-129
    • /
    • 2013
  • Intact phycobilisomes from a wild-type red Chondrus crispus and its vegetatively derived green mutant were isolated by centrifugation through a discontinuous sucrose density gradient. Pigment composition was subsequently characterized by spectrophotometry. Vegetative thalli of the two strains grown together for six months in the laboratory resulted in different pigment profiles. Two pigmented phycobilisome bands appeared in the sucrose gradient of the wild-type alga, a purple coloured one, and a pink one, whereas only a single blue band appeared in the gradient of the green mutant. Spectrophotometric and fluorescence analyses identified the phycobiliprotein composition of the purple band as the typical phycoerythrin-phycocyanin-allophycocyanin complement in the wild-type, but there was no detectable phycoerythrin present in the blue band of the green mutant. Sodium dodecyl sulphate, preparative polyacrylamide gel electrophoresis analysis confirmed the presence of allophycocyanin subunits in all extracts, but firm evidence of an R-phycoerythrin linker polypeptide in the blue band was missing. These results highlight the ability of C. crispus to adapt to a phycoerythrin deficiency by adjusting light harvesting pigment ratios.