최근 디지털 콘텐츠 서비스 분야에서 사용자 맞춤형 서비스를 위해 사용자 자원 인식의 필요성이 대두되고 있다. 특히 온라인 기반 음악 서비스의 경우 사용자 취향 분석, 음원 추천 및 음악 관련 정보 제공을 위해 사용자 음원인식 기술이 요구되고 있다. 현재 태그정보를 기초로 사용자 음원 인식 후 음악 관련 정보를 제공하는 서비스가 제공되고 있지만, 태그정보의 변조 및 삭제 등의 취약점으로 인식 오류가 급증하고 있다. 이러한 문제의 보완 방안으로 음악 자체를 이용하는 내용기반 사용자 음원 인식 기법에 대한 연구가 이루어지고 있다. 본 논문에서는 음악의 파형에서 추출된 특징 정보를 기초로 온라인상에서 사용자 음원을 인식하는 방법에 대해 논하고자 한다. 사용자 음원의 내용기반 인식을 위해 구조에 적합한 음원의 전처리 후 특징 추출을 하였다. 추출된 특징은 음악 서버에 특징 형태로 저장된 음원과의 매칭 과정을 통한 인식을 진행하여 태그데이터에 독립적으로 사용자 음원을 인식할 수 있게 되었다. 제안된 사용자 음원 인식 방법의 검증을 위해 600개의 음악을 무작위 선정하고, 각각을 5가지 음질로 변화하였다. 이렇게 생성된 3000개의 실험음원을 30만곡을 포함하는 음악 서버를 기준으로 인식실험을 진행하였다. 평균 인식율은 85%를 나타내었다. 제안하는 내용기반 음원 인식을 통하여 태그기반 음원 인식의 취약점에 대한 극복을 하였으며, 음원 인식의 성능은 실제 온라인 음악 서비스에 적용할 가능성을 보여주었다.
Interest in music recognition has been growing dramatically after NHN and Daum released their mobile applications for music recognition in 2010. Methods in music recognition based on audio analysis fall into two categories: music recognition using audio fingerprint and Query-by-Singing/Humming (QBSH). While music recognition using audio fingerprint receives music as its input, QBSH involves taking a user-hummed melody. In this paper, research trends are described for music recognition using audio fingerprint, focusing on two methods: one based on fingerprint generation using energy difference between consecutive bands and the other based on hash key generation between peak points. Details presented in the representative papers of each method are introduced.
In this paper, we propose a smart system that can optically recognize a music score within a document and can play the music after recognition. Many historic handwritten documents have now been digitalized. Converting images of a music score within documents into digital files is particularly difficult and requires considerable resources because a music score consists of a 2D structure with both staff lines and symbols. The proposed system takes an input image using a mobile device equipped with a camera module, and the image is optimized via preprocessing. Binarization, music sheet correction, staff line recognition, vertical line detection, note recognition, and symbol recognition processing are then applied, and a music file is generated in an XML format. The Music XML file is recorded as digital information, and based on that file, we can modify the result, logically correct errors, and finally generate a MIDI file. Our system reduces misrecognition, and a wider range of music score can be recognized because we have implemented distortion correction and vertical line detection. We show that the proposed method is practical, and that is has potential for wide application through an experiment with a variety of music scores.
Objective: This study examined how child care teachers' playfulness and recognition of music and movement relate to their teaching intention of music and movement. Methods: Participants were 200 child care teachers in Seoul, Incheon and Gyeonggi areas. The data were analyzed for descriptive statistics, pearson's correlation analysis, hierarchical multiple regression analysis, and sobel test. Results: The main results were as follows: First, child care teachers' playfulness, teaching intention of music and movement and their recognition of music and movement were positively correlated. Second, child care teachers' playfulness influenced on their teaching intention of music and movement. Finally, teachers' recognition of music and movement mediated the relationship between teachers' playfulness and their teaching intention of music and movement. Conclusion: This study showed that teachers' playfulness influenced on their positive recognition of music and movement activities, which was the variable that caused mediation in the teachers' playfulness and their teaching attention.
딥러닝에 기반한 광학 음악 인식 기술(Optical Music Recognition, OMR)을 사용하여 도출된 결과를 가상현실 (Virtual Reality, VR) 게임에 적용시킨 것을 제안한다. 딥러닝 모델은 YOLO v5를 사용했으며 검출되지 않은 객체를 검출하기 위해 Hough transform 사용, 보표 크기 수정 등을 수행한다. 출력된 결과 파일을 사용하여 VR 게임에서 BPM, 최대 콤보 수, 음정과 박자를 분석하여 사용하고 리소스 관리를 위한 Object Pooling 기술을 통해 노트가 밀리는 현상을 방지한다. 광학 음악 인식 기술을 통해 나온 음악 요소로 VR 게임을 제작하여 VR 콘텐츠 제공과 함께 광학 음악 인식의 활용성을 넓히는 것을 확인하였다.
본 논문에서는 신경회로망 알고리즘 중 하나인 backpropagation network을 이용한 악보인식 기법과 그에 필요한 악보 영상에 대한 전처리 기법을 제안한다. 전처리과정으로 이진화, 기울기 보정, 오선제거 등의 과정을 수행하여 인식에 필요한 음악 기호와 음표를 분리한다. 분리된 음악 기호와 음표들은 backpropagation 알고리즘을 사용하여 구성된 음표 인식 신경망과 비음표 인식 신경망을 통해 각각 음표와 비음표 인식과정을 거친다. 다양한 복잡도를 가진 악보를 대상으로 한 실험 및 분석 결과를 통해 제안한 악보 인식 기법의 정확도를 기술하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제11권2호
/
pp.124-128
/
2011
Music emotion recognition is currently one of the most attractive research areas in music information retrieval. In order to use emotion as clues when searching for a particular music, several music based emotion recognizing systems are fundamentally utilized. In order to maximize user satisfaction, the recognition accuracy is very important. In this paper, we develop a new music emotion recognition system, which employs a multilabel feature selector and multilabel classifier. The performance of the proposed system is demonstrated using novel musical emotion data.
Mulyadi, Ahmad Wisnu;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
한국멀티미디어학회논문지
/
제19권5호
/
pp.826-836
/
2016
Mastering a musical instrument for an unskilled beginning learner is not an easy task. It requires playing every note correctly and maintaining the tempo accurately. Any music comes in two forms, a music score and it rendition into an audio music. The proposed method of assisting beginning music players in both aspects employs two popular pattern recognition methods for audio-visual analysis; they are support vector machine (SVM) for music score recognition and hidden Markov model (HMM) for audio music performance tracking. With proper synchronization of the two results, the proposed music learning assistant system can give useful feedback to self-training beginners.
최근 다양한 분야에서(웹 포털, 유료 음원서비스 등) 디지털 음악의 검색이 사용되고 있다. 기존의 디지털 음악의 검색은 음악 데이터에 포함된 자체 메타 정보를 이용하여 이루어진다. 하지만 메타 정보가 다르게 작성되었거나 작성되지 않은 경우 정확한 검색은 어렵다. 요즘 이러한 문제의 보완 방안으로 음악자체를 이용하는 내용기반정보 검색 기법에 대한 연구가 이루어지고 있다. 본 논문에서는 음악의 파형에서 추출된 특징 정보간의 유사도 측정을 통하여 동일음원을 인식하는 방법에 대해 논하고자 한다. 디지털 음악의 특징 정보는 단순화시킨 MFCC (Mel Frequency Cepstral Coefficient)를 이용하여 음악의 파형으로부터 추출하였다. 디지털 음악간의 유사도는 Vision 및 Speech Recognition 분야에서 사용되던 DTW (Dynamic Time Warping) 기법을 활용하여 측정하였다. 제안된 동일 음원 인식 방법의 검증을 위한 같은 장르에서 무작위 추출된 1000곡에서 시행한 500번의 검색은 모두 성공했다. 검색에 사용된 500개의 디지털 오디오는 60개의 디지털음원을 압축방식과 비트율을 다르게 조합하여 만들었다. 실험의 결과로 DTW을 이용한 유사도 측정법이 동일음원을 인식할 수 있음을 증명하였다.
To realize a traditional music recognition system, some characteristics pertinent to Far East Asian music should be found. Using Spectrogram, some distinct attributes of Korean traditional music are surveyed. Frequency distribution, beat cycle and frequency energy intensity within samples have distinct characteristics of their own. Experiment is done for pre-experimentation to realize Korean traditional music recognition system. Using characteristics of Korean traditional music, $94.5\%$ of classification accuracy is acquired. As Korea, Japan and China have the same musical roots, both in instruments and playing style, analyzing Korean traditional music can be helpful in the understanding of Far East Asian traditional music.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.