• Title/Summary/Keyword: Music recognition

Search Result 174, Processing Time 0.022 seconds

Development of User Music Recognition System For Online Music Management Service (온라인 음악 관리 서비스를 위한 사용자 음원 인식 시스템 개발)

  • Sung, Bo-Kyung;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.91-99
    • /
    • 2010
  • Recently, recognizing user resource for personalized service has been needed in digital content service fields. Especially, to analyze user taste, recommend music and service music related information need recognition of user music file in case of online music service. Music related information service is offered through recognizing user music based on tag information. Recognition error has grown by weak points like changing and removing of tag information. Techniques of content based user music recognition with music signal itself are researched for solving upper problems. In this paper, we propose user music recognition on the internet by extracted feature from music signal. Features are extracted after suitable preprocessing for structure of content based user music recognition. Recognizing on music server consist of feature form are progressed with extracted feature. Through this, user music can be recognized independently of tag data. 600 music was collected and converted to each 5 music qualities for proving of proposed recognition. Converted 3000 experiment music on this method is used for recognition experiment on music server including 300,000 music. Average of recognition ratio was 85%. Weak points of tag based music recognition were overcome through proposed content based music recognition. Recognition performance of proposed method show a possibility that can be adapt to online music service in practice.

Music Recognition Using Audio Fingerprint: A Survey (오디오 Fingerprint를 이용한 음악인식 연구 동향)

  • Lee, Dong-Hyun;Lim, Min-Kyu;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.4 no.1
    • /
    • pp.77-87
    • /
    • 2012
  • Interest in music recognition has been growing dramatically after NHN and Daum released their mobile applications for music recognition in 2010. Methods in music recognition based on audio analysis fall into two categories: music recognition using audio fingerprint and Query-by-Singing/Humming (QBSH). While music recognition using audio fingerprint receives music as its input, QBSH involves taking a user-hummed melody. In this paper, research trends are described for music recognition using audio fingerprint, focusing on two methods: one based on fingerprint generation using energy difference between consecutive bands and the other based on hash key generation between peak points. Details presented in the representative papers of each method are introduced.

Optical Music Score Recognition System for Smart Mobile Devices

  • Han, SeJin;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • In this paper, we propose a smart system that can optically recognize a music score within a document and can play the music after recognition. Many historic handwritten documents have now been digitalized. Converting images of a music score within documents into digital files is particularly difficult and requires considerable resources because a music score consists of a 2D structure with both staff lines and symbols. The proposed system takes an input image using a mobile device equipped with a camera module, and the image is optimized via preprocessing. Binarization, music sheet correction, staff line recognition, vertical line detection, note recognition, and symbol recognition processing are then applied, and a music file is generated in an XML format. The Music XML file is recorded as digital information, and based on that file, we can modify the result, logically correct errors, and finally generate a MIDI file. Our system reduces misrecognition, and a wider range of music score can be recognized because we have implemented distortion correction and vertical line detection. We show that the proposed method is practical, and that is has potential for wide application through an experiment with a variety of music scores.

Child Care Teachers' Playfulness and Teaching Intention: Focusing on the Mediating Effects of Recognition of Music and Movement Activities (보육교사의 놀이성과 음률지도 적극성: 음률활동에 대한 인식의 매개효과를 중심으로)

  • Lee, Ina;Lee, Wanjeong
    • Korean Journal of Child Studies
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Objective: This study examined how child care teachers' playfulness and recognition of music and movement relate to their teaching intention of music and movement. Methods: Participants were 200 child care teachers in Seoul, Incheon and Gyeonggi areas. The data were analyzed for descriptive statistics, pearson's correlation analysis, hierarchical multiple regression analysis, and sobel test. Results: The main results were as follows: First, child care teachers' playfulness, teaching intention of music and movement and their recognition of music and movement were positively correlated. Second, child care teachers' playfulness influenced on their teaching intention of music and movement. Finally, teachers' recognition of music and movement mediated the relationship between teachers' playfulness and their teaching intention of music and movement. Conclusion: This study showed that teachers' playfulness influenced on their positive recognition of music and movement activities, which was the variable that caused mediation in the teachers' playfulness and their teaching attention.

YOLO based Optical Music Recognition and Virtual Reality Content Creation Method (YOLO 기반의 광학 음악 인식 기술 및 가상현실 콘텐츠 제작 방법)

  • Oh, Kyeongmin;Hong, Yoseop;Baek, Geonyeong;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.80-90
    • /
    • 2021
  • Using optical music recognition technology based on deep learning, we propose to apply the results derived to VR games. To detect the music objects in the music sheet, the deep learning model used YOLO v5, and Hough transform was employed to detect undetected objects, modifying the size of the staff. It analyzes and uses BPM, maximum number of combos, and musical notes in VR games using output result files, and prevents the backlog of notes through Object Pooling technology for resource management. In this paper, VR games can be produced with music elements derived from optical music recognition technology to expand the utilization of optical music recognition along with providing VR contents.

Recognition of Music using Backpropagation Network (Backpropagation을 이용한 악보인식)

  • Park, Hyun-Jun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1170-1175
    • /
    • 2007
  • This paper presents techniques to recognize music using back propagation network one of the neural network algorithms, and to preprocess technique for music mage. Music symbols and music notes are segmented by preprocessing such as binarization, slope correction, staff line removing, etc. Segmented music symbols and music notes are recognized by music note recognizing network and non-music note recognizing network. We proved correctness of proposed music recognition algorithm though experiments and analysis with various kind of musics.

SYMMER: A Systematic Approach to Multiple Musical Emotion Recognition

  • Lee, Jae-Sung;Jo, Jin-Hyuk;Lee, Jae-Joon;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • Music emotion recognition is currently one of the most attractive research areas in music information retrieval. In order to use emotion as clues when searching for a particular music, several music based emotion recognizing systems are fundamentally utilized. In order to maximize user satisfaction, the recognition accuracy is very important. In this paper, we develop a new music emotion recognition system, which employs a multilabel feature selector and multilabel classifier. The performance of the proposed system is demonstrated using novel musical emotion data.

Design of Music Learning Assistant Based on Audio Music and Music Score Recognition

  • Mulyadi, Ahmad Wisnu;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.826-836
    • /
    • 2016
  • Mastering a musical instrument for an unskilled beginning learner is not an easy task. It requires playing every note correctly and maintaining the tempo accurately. Any music comes in two forms, a music score and it rendition into an audio music. The proposed method of assisting beginning music players in both aspects employs two popular pattern recognition methods for audio-visual analysis; they are support vector machine (SVM) for music score recognition and hidden Markov model (HMM) for audio music performance tracking. With proper synchronization of the two results, the proposed music learning assistant system can give useful feedback to self-training beginners.

Same music file recognition method by using similarity measurement among music feature data (음악 특징점간의 유사도 측정을 이용한 동일음원 인식 방법)

  • Sung, Bo-Kyung;Chung, Myoung-Beom;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.99-106
    • /
    • 2008
  • Recently, digital music retrieval is using in many fields (Web portal. audio service site etc). In existing fields, Meta data of music are used for digital music retrieval. If Meta data are not right or do not exist, it is hard to get high accurate retrieval result. Contents based information retrieval that use music itself are researched for solving upper problem. In this paper, we propose Same music recognition method using similarity measurement. Feature data of digital music are extracted from waveform of music using Simplified MFCC (Mel Frequency Cepstral Coefficient). Similarity between digital music files are measured using DTW (Dynamic time Warping) that are used in Vision and Speech recognition fields. We success all of 500 times experiment in randomly collected 1000 songs from same genre for preying of proposed same music recognition method. 500 digital music were made by mixing different compressing codec and bit-rate from 60 digital audios. We ploved that similarity measurement using DTW can recognize same music.

  • PDF

Determining Key Features of Recognition Korean Traditional Music Using Spectrogram

  • Kim Jae Chun;Kwak Kyung Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.67-70
    • /
    • 2005
  • To realize a traditional music recognition system, some characteristics pertinent to Far East Asian music should be found. Using Spectrogram, some distinct attributes of Korean traditional music are surveyed. Frequency distribution, beat cycle and frequency energy intensity within samples have distinct characteristics of their own. Experiment is done for pre-experimentation to realize Korean traditional music recognition system. Using characteristics of Korean traditional music, $94.5\%$ of classification accuracy is acquired. As Korea, Japan and China have the same musical roots, both in instruments and playing style, analyzing Korean traditional music can be helpful in the understanding of Far East Asian traditional music.