• Title/Summary/Keyword: Music Summarization

Search Result 9, Processing Time 0.026 seconds

Music summarization using visual information of music and clustering method

  • Kim, Sang-Ho;Ji, Mi-Kyong;Kim, Hoi-Rin
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we present effective methods for music summarization which summarize music automatically. It could be used for sample music of on-line digital music provider or some music retrieval technology. When summarizing music, we use different two methods according to music length. First method is for finding sabi or chorus part of music which can be regarded as the most important part of music and the second method is for extracting several parts which are in different structure or have different mood in the music. Our proposed music summarization system is better than conventional system when structure of target music is explicit. The proposed method could generate just one important segment of music or several segments which have different mood in the music. Thus, this scheme will be effective for summarizing music in several applications such as online music streaming service and sample music for Tcommerce.

  • PDF

Automatic Music Summarization Using Vector Quantization and Segment Similarity

  • Kim, Sang-Ho;Kim, Sung-Tak;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose an effective method for music summarization which automatically extracts a representative part of the music by using signal processing technology. Proposed method uses a vector quantization technique to extract several segments which can be regarded as the most important contents in the music. In general, there is a repetitive pattern in music, and human usually recognizes the most important or catchy tune from the repetitive pattern. Thus the repetition which is extracted using segment similarity is considered to express a music summary. The segments extracted are again combined to generate a complete music summary. Experiments show the proposed method captures the main theme of the music more effectively than conventional methods. The experimental results also show that the proposed method could be used for real-time application since the processing time in generating music summary is much faster than other methods.

Music Structure Analysis and Application (악곡구조 분석과 활용)

  • Seo, Jung-Bum;Bae, Jae-Hak
    • The KIPS Transactions:PartB
    • /
    • v.14B no.1 s.111
    • /
    • pp.33-42
    • /
    • 2007
  • This paper presents a new methodology for music structure analysis which facilitates rhetoric-based music summarization. Similarity analysis of musical constituents suggests the structure of a musical piece. We can recognize its musical form from the structure. Musical forms have rhetorical characteristics of their on. We have utilized the characteristics for locating musical motifs. Motif extraction is to music summarization what topic sentence extraction is to text summarization. We have evaluated the effectiveness of this methodology through a popular music case study.

Automatic Music Summarization Using Similarity Measure Based on Multi-Level Vector Quantization (다중레벨 벡터양자화 기반의 유사도를 이용한 자동 음악요약)

  • Kim, Sung-Tak;Kim, Sang-Ho;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.39-43
    • /
    • 2007
  • Music summarization refers to a technique which automatically extracts the most important and representative segments in music content. In this paper, we propose and evaluate a technique which provides the repeated part in music content as music summary. For extracting a repeated segment in music content, the proposed algorithm uses the weighted sum of similarity measures based on multi-level vector quantization for fixed-length summary or optimal-length summary. For similarity measures, count-based similarity measure and distance-based similarity measure are proposed. The number of the same codeword and the Mahalanobis distance of features which have same codeword at the same position in segments are used for count-based and distance-based similarity measure, respectively. Fixed-length music summary is evaluated by measuring the overlapping ratio between hand-made repeated parts and automatically generated ones. Optimal-length music summary is evaluated by calculating how much automatically generated music summary includes repeated parts of the music content. From experiments we observed that optimal-length summary could capture the repeated parts in music content more effectively in terms of summary length than fixed-length summary.

Automatic Music Summarization Method by using the Bit Error Rate of the Audio Fingerprint and a System thereof (오디오 핑거프린트의 비트에러율을 이용한 자동 음악 요약 기법 및 시스템)

  • Kim, Minseong;Park, Mansoo;Kim, Hoirin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.453-463
    • /
    • 2013
  • In this paper, we present an effective method and a system for the music summarization which automatically extract the chorus portion of a piece of music. A music summary technology is very useful for browsing a song or generating a sample music for an online music service. To develop the solution, conventional automatic music summarization methods use a 2-dimensional similarity matrix, statistical models, or clustering techniques. But our proposed method extracts the music summary by calculating BER(Bit Error Rate) between audio fingerprint blocks which are extracted from a song. But we could directly use an enormous audio fingerprint database which was already saved for a music retrieval solution. This shows the possibility of developing a various of new algorithms and solutions using the audio fingerprint database. In addition, experiments show that the proposed method captures the chorus of a song more effectively than a conventional method.

Moving Average Filter for Automatic Music Segmentation & Summarization (이동 평균 필터를 적용한 음악 세그멘테이션 및 요약)

  • Kim Kil-Youn;Oh Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.143-146
    • /
    • 2006
  • Music is now digitally produced and distributed via internet and we face a huge amount of music day by day. A music summarization technology has been studied in order to help people concentrate on the most impressive section of the song andone can skim a song as listening the climax(chorus, refrain) only. Recent studies try to find the climax section using various methods such as finding diagonal line segment or kernel based segmentation. All these methods fail to capture the inherent structure of music due to polyphonic and noisy nature of music. In this paper, after applying moving average filter to time domain of MFCC/chroma feature, we achieved a remarkable result to capture the music structure.

  • PDF

Improvement of MP3-Based Music Summarization Using Linear Regression (선형 근사를 통한 MP3 음악 요약의 성능 향상)

  • Koh, Seo-Young;Park, Jeong-Sik;Oh, Yung-hwan
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.55-58
    • /
    • 2005
  • Music Summarization is to extract there presentative section of a song such as chorus or motif. In previous work, the length of music summarization was fixed, and the threshold to determine the chorus section was so sensitive that the tuning was needed. Also, the rapid change of rhythm or variation of sound effects make the chorus extraction errors. We suggest the linear regression for extracting the changeable length and for minimizing the effects of threshold variation. The experimental result shows that proposed method outperforms conventional one.

  • PDF

Music Lyrics Summarization Method using TextRank Algorithm (TextRank 알고리즘을 이용한 음악 가사 요약 기법)

  • Son, Jiyoung;Shin, Yongtae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • This research paper describes how to summarize music lyrics using the TextRank algorithm. This method can summarize music lyrics as important lyrics. Therefore, we recommend music more effectively than analyzing the number of words and recommending music.

A Study on Music Summarization (음악요약 생성에 관한 연구)

  • Kim Sung-Tak;Kim Sang-Ho;Kim Hoi-Rin;Choi Ji-Hoon;Lee Han-Kyu;Hong Jin-Woo
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.3-14
    • /
    • 2006
  • Music summarization means a technique which automatically generates the most importantand representative a part or parts ill music content. The techniques of music summarization have been studied with two categories according to summary characteristics. The first one is that the repeated part is provided as music summary and the second provides the combined segments which consist of segments with different characteristics as music summary in music content In this paper, we propose and evaluate two kinds of music summarization techniques. The algorithm using multi-level vector quantization which provides a repeated part as music summary gives fixed-length music summary is evaluated by overlapping ration between hand-made repeated parts and automatically generated summary. As results, the overlapping ratios of conventional methods are 42.2% and 47.4%, but that of proposed method with fixed-length summary is 67.1%. Optimal length music summary is evaluated by the portion of overlapping between summary and repeated part which is different length according to music content and the result shows that automatically-generated summary expresses more effective part than fixed-length summary with optimal length. The cluster-based algorithm using 2-D similarity matrix and k-means algorithm provides the combined segments as music summary. In order to evaluate this algorithm, we use MOS test consisting of two questions(How many similar segments are in summarized music? How many segments are included in same structure?) and the results show good performance.