• 제목/요약/키워드: Music Genre Classification System

검색결과 23건 처리시간 0.026초

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

음악 장르 분류를 이용한 자동차 오디오 시스템에서의 이퀄라이저 자동 조절 방식 (Automatic Equalizer Control Method Using Music Genre Classification in Automobile Audio System)

  • 김형국;남상순
    • 한국ITS학회 논문지
    • /
    • 제8권4호
    • /
    • pp.33-38
    • /
    • 2009
  • 본 논문은 자동차 오디오 시스템에 내장된 라디오에서 실시간으로 재생되는 연속적인 오디오 신호로부터 음악 신호를 선별하고, 해당 음악에 대한 실시간 음악장르 분류를 통해 자동으로 이퀄라이저를 조절하는 방식을 제안한다. 제안된 방식에서는 음악분류 정확도를 높이고 실시간 신호처리를 실행하기 위해 연속적인 오디오 신호로부터 추출한 음색 특징 벡터와 리듬 특징 벡터를 GMM (Gaussian mixture model) 분류 방식에 적용하여 음악 분류를 수행한다. 제안된 방식은 카오디오 시스템의 라디오로부터 출력된 오디오 신호로부터 분할된 다양한 오디오 구간을 5가지 음악장르로 분류하여 음악 장르 분류 성능을 측정하였다.

  • PDF

Music Genre Classification Based on Timbral Texture and Rhythmic Content Features

  • Baniya, Babu Kaji;Ghimire, Deepak;Lee, Joonwhon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.204-207
    • /
    • 2013
  • Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.

생성적 적대 신경망(GAN)을 이용한 딥러닝 음악 장르 분류 시스템 모델 개선 (Deep Learning Music Genre Classification System Model Improvement Using Generative Adversarial Networks (GAN))

  • 배준
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.842-848
    • /
    • 2020
  • 아이튠즈, 스포티파이, 멜론 등 음악시장은 바야흐로 스트리밍의 시대로 접어들었고, 음악 소비자의 취향에 맞는 음악 선곡과 제안을 위해 음악장르 자동 구분 시스템에 대한 요구와 연구가 활발하다. 이전 논문에서 제안한 소프트 맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템을 더욱 발전시켜 생성적 적대 신경망(GAN)을 이용하여 이전 시스템의 미흡한 점이었던 장르 미분류 곡들에 대한 정확도를 높이는 방법을 제안한다. 이전 연구에서는 전체 곡을 작은 샘플 로 나누고 각각의 샘플을 CNN 분석하여 그 결과들의 총합으로 장르 구분을 하는 투표 시스템으로 곡 장르분류 정확도를 높일 수 있었다. 하지만 곡의 스펙트로그램이 곡의 장르를 파악하기에 모호한 곡의 경우에는 미분류 곡으로 남겨놓을 수밖에 없었다. 이 논문에서는 생성적 적대 신경망을 이용하여 미분류 곡의 스펙트로그램을 판독하기 쉬운 장르의 스펙트로그램으로 바꾸어 미분류 곡의 장르 구분 정확도를 높이는 시스템을 제안하고 그 실험결과 기존 방식에 비해 우수한 결과를 도출해낼 수 있었다.

Decorrelated Filter Bank를 이용한 음악 장르 분류 시스템 (Music Genre Classification System Using Decorrelated Filter Bank)

  • 임신철;장세진;이석필;김무영
    • 한국음향학회지
    • /
    • 제30권2호
    • /
    • pp.100-106
    • /
    • 2011
  • 음원의 디지털화가 진행되면서 음악 데이터베이스가 방대해지고 있다. 따라서, 음악 데이터를 보다 효과적으로 관리하기 위해 음악의 특성에 따라 장르별로 자동 분류해주는 시스템이 필요하다. 기존 장르 분류 시스템은 대부분 Mel-Frequency Cepstral Coefficient (MFCC)를 특징 벡터로 이용하고 있다. 본 논문에서는 Auditory Filter Bank를 이용한 Decorrelated Filter Bank (DFB)와 Octave-based Spectral Contrast (OSC)에 texture window를 적용하여 특징을 추출한 후, Support Vector Machine (SVM)을 이용하여 장르 분류를 시도하였다. 기존의 Marsyas 장르 분류 시스템과 비교한 결과 DFB와 OSC로 복합적인 특징 벡터를 구성하면 더 적은 차수의 특징벡터를 사용함에도 4.2 %의 향상된 분류 성공률을 얻을 수 있었다.

음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구 (An investigation of subband decomposition and feature-dimension reduction for musical genre classification)

  • 서진수;김정현;박지현
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.144-150
    • /
    • 2017
  • 음악 장르는 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 필수적인 요소이다. 일반적으로 장르 분류를 위한 스펙트럼 특징은 음악의 화음 및 강약 구조를 표현하기 위해 부밴드로 분해하여 구해진다. 본 논문은 음악 장르 분류 성능 개선을 위한 특징 추출을 위한 부밴드 분해 방법에 관해 연구하였다. 또한 부밴드 음악 특징의 차수를 줄일 수 있는 방법에 대해서도 연구하였다. 널리 사용되고 있는 장르 데이터셋들에서 실험을 수행하여 널리 사용되고 있는 옥타브 스케일보다 세분화된 부밴드 분해가 장르 분류 성능을 향상시킬 수 있으며, 특징 차수 축소를 결합하여 분류기의 계산량도 줄일 수 있음을 보였다.

한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현 (An Implementation of Automatic Genre Classification System for Korean Traditional Music)

  • 이강규;윤원중;박규식
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.

스파이크그램과 심층 신경망을 이용한 음악 장르 분류 (Music Genre Classification using Spikegram and Deep Neural Network)

  • 장우진;윤호원;신성현;조효진;장원;박호종
    • 방송공학회논문지
    • /
    • 제22권6호
    • /
    • pp.693-701
    • /
    • 2017
  • 본 논문은 스파이크그램과 심층 신경망을 이용한 새로운 음악 장르 분류 방법을 제안한다. 인간의 청각 시스템은 최소 에너지와 신경 자원을 사용하여 최대 청각 정보를 뇌로 전달하기 위하여 입력 소리를 시간과 주파수 영역에서 부호화한다. 스파이크그램은 이러한 청각 시스템의 부호화 동작을 기반으로 파형을 분석하는 기법이다. 제안하는 방법은 스파이크그램을 이용하여 신호를 분석하고 그 결과로부터 장르 분류를 위한 핵심 정보로 구성된 특성 벡터를 추출하고, 이를 심층 신경망의 입력 벡터로 사용한다. 성능 측정에는 10개의 음악 장르로 구성된 GTZAN 데이터 세트를 사용하였고, 제안 방법이 기존 방법에 비해 낮은 차원의 특성 벡터를 사용하여 우수한 성능을 제공하는 것을 확인하였다.

지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구 (Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System)

  • 박준형;박승민;이영환;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2011
  • 최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.

다중 옥타브 밴드 기반 음악 장르 분류 시스템 (Musical Genre Classification System based on Multiple-Octave Bands)

  • 변가람;김무영
    • 전자공학회논문지
    • /
    • 제50권12호
    • /
    • pp.238-244
    • /
    • 2013
  • 음악 장르 분류를 위해서 다양한 종류의 특징 벡터들이 이용되고 있다. 대표적인 short-term 특징 벡터들로는 mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC) 등이 있으며, 이들의 long-term variation이 함께 이용된다. 본 논문에서는 OSC 특징을 추출하는데 있어서 하나의 옥타브 밴드 뿐만 아니라 다중 옥타브 밴드를 동시에 이용하여 옥타브 밴드 간 상관관계를 함께 반영할 수 있도록 하였다. 2012년도 music information retrieval evaluation exchange (MIREX) 평가회의 mixed 장르 분류 분야에서 4위를 한 알고리즘에 다중 옥타브 밴드를 이용한 결과, GTZAN과 Ballroom 데이터베이스에 대해서 각각 0.40% 포인트와 3.15% 포인트의 성능 향상을 얻을 수 있었다.