• Title/Summary/Keyword: Music Genre Classification

Search Result 55, Processing Time 0.026 seconds

Multiclass Music Classification Approach Based on Genre and Emotion

  • Jonghwa Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.27-32
    • /
    • 2024
  • Reliable and fine-grained musical metadata are required for efficient search of rapidly increasing music files. In particular, since the primary motive for listening to music is its emotional effect, diversion, and the memories it awakens, emotion classification along with genre classification of music is crucial. In this paper, as an initial approach towards a "ground-truth" dataset for music emotion and genre classification, we elaborately generated a music corpus through labeling of a large number of ordinary people. In order to verify the suitability of the dataset through the classification results, we extracted features according to MPEG-7 audio standard and applied different machine learning models based on statistics and deep neural network to automatically classify the dataset. By using standard hyperparameter setting, we reached an accuracy of 93% for genre classification and 80% for emotion classification, and believe that our dataset can be used as a meaningful comparative dataset in this research field.

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

Automatic Equalizer Control Method Using Music Genre Classification in Automobile Audio System (음악 장르 분류를 이용한 자동차 오디오 시스템에서의 이퀄라이저 자동 조절 방식)

  • Kim, Hyoung-Gook;Nam, Sang-Soon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.33-38
    • /
    • 2009
  • This paper proposes an automatic equalizer control method in automobile audio system. The proposed method discriminates the music segment from the consecutive real-time audio stream of the radio and the equalizer is controlled automatically according to the classified genre of the music segment. For enhancing the accuracy of the music genre classification in real-time, timbre feature and rhythm feature extracted from the consecutive audio stream is applied to GMM(Gaussian mixture model) classifier. The proposed method evaluates the performance of the music genre classification, which classified various audio segments segmented from the audio signal of the radio broadcast in automobile audio system into one of five music genres.

  • PDF

Music Genre Classification Based on Timbral Texture and Rhythmic Content Features

  • Baniya, Babu Kaji;Ghimire, Deepak;Lee, Joonwhon
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.204-207
    • /
    • 2013
  • Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.

An investigation of subband decomposition and feature-dimension reduction for musical genre classification (음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Musical genre is indispensible in constructing music information retrieval system, such as music search and classification. In general, the spectral characteristics of a music signal are obtained based on a subband decomposition to represent the relative distribution of the harmonic and the non-harmonic components. In this paper, we investigate the subband decomposition parameters in extracting features, which improves musical genre classification accuracy. In addition, the linear projection methods are studied to reduce the resulting feature dimension. Experiments on the widely used music datasets confirmed that the subband decomposition finer than the widely-adopted octave scale is conducive in improving genre-classification accuracy and showed that the feature-dimension reduction is effective reducing a classifier's computational complexity.

Client-driven Music Genre Classification Framework (클라이언트 중심의 음악 장르 분류 프레임워크)

  • Mujtaba, Ghulam;Park, Eun-Soo;Kim, Seunghwan;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.714-716
    • /
    • 2020
  • We propose a unique client-driven music genre classification solution, that can identify the music genre using a deep convolutional neural network operating on the time-domain signal. The proposed method uses the client device (Jetson TX2) computational resources to identify the music genre. We use the industry famous GTZAN genre collection dataset to get reliable benchmarking performance. HTTP live streaming (HLS) client and server sides are designed locally to validate the effectiveness of the proposed method. HTTP persistent broadcast connection is adapted to reduce corresponding responses and network bandwidth. The proposed model can identify the genre of music files with 97% accuracy. Due to simplicity and it can support a wide range of client hardware.

  • PDF

Content-Based Genre Classification Using Climax Extraction in Music (음악의 클라이맥스 추출을 이용한 내용 기반 장르 분류)

  • Ko, Il-Ju;Chung, Myoung-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.817-826
    • /
    • 2007
  • The existing a music genre classification research used signal feature of the part which gets 20 seconds interval of the random or the $40%{\sim}45%$ after in the music. This paper propose it to increase the accuracy of existing research to classify music genre using climax part in the music. Generally the music is divided to three parts; introduction, progress and climax. And the climax is the part which the music emphasizes and expresses the feature of the music best. So, we can get efficient result if the climax is used, when the music classify. We can get the climax in the music finding the tempo and node which uses FFT and the maximum waveform from each node. In this paper, we did a genre classification experiment which uses existing research method and proposing method. The existing method expressed 47% accuracy. And proposing method expressed 56% accuracy which is improved than existing method.

  • PDF

Music Genre Classification System Using Decorrelated Filter Bank (Decorrelated Filter Bank를 이용한 음악 장르 분류 시스템)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.100-106
    • /
    • 2011
  • Music recordings have been digitalized such that huge size of music database is available to the public. Thus, the automatic classification system of music genres is required to effectively manage the growing music database. Mel-Frequency Cepstral Coefficient (MFCC) is a popular feature vector for genre classification. In this paper, the combined super-vector with Decorrelated Filter Bank (DFB) and Octave-based Spectral Contrast (OSC) using texture windows is processed by Support Vector Machine (SVM) for genre classification. Even with the lower order of the feature vector, the proposed super-vector produces 4.2 % improved classification accuracy compared with the conventional Marsyas system.

Deep Learning Music Genre Classification System Model Improvement Using Generative Adversarial Networks (GAN) (생성적 적대 신경망(GAN)을 이용한 딥러닝 음악 장르 분류 시스템 모델 개선)

  • Bae, Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.842-848
    • /
    • 2020
  • Music markets have entered the era of streaming. In order to select and propose music that suits the taste of music consumers, there is an active demand and research on an automatic music genre classification system. We propose a method to improve the accuracy of genre unclassified songs, which was a lack of the previous system, by using a generative adversarial network (GAN) to further develop the automatic voting system for deep learning music genre using Softmax proposed in the previous paper. In the previous study, if the spectrogram of the song was ambiguous to grasp the genre of the song, it was forced to leave it as an unclassified song. In this paper, we proposed a system that increases the accuracy of genre classification of unclassified songs by converting the spectrogram of unclassified songs into an easy-to-read spectrogram using GAN. And the result of the experiment was able to derive an excellent result compared to the existing method.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.