• 제목/요약/키워드: Mushy Zone

검색결과 25건 처리시간 0.024초

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL

  • Tran, Chi-Thanh;Dinh, Truc-Nam
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.929-944
    • /
    • 2009
  • The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.

온도-엔탈피 관계를 이용한 응고과정의 유한요소 해석 (Finite Element Analysis of Solidification Process Using the Temperature-Enthalpy Relationship)

  • 조성수;하성규
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1213-1222
    • /
    • 1999
  • A finite element method is developed for calculating the temperature and enthalpy distribution and accordingly the solid, liquid and mushy zone in a three-dimensional body subjected to any heat boundary conditions. The method concurrently consider both temperature and enthalpy for consideration of the latent heat effect, differently from other methods of using a special energy balance equation for solving a mushy zone. The developed brick element has eight nodes with one degree of freedom at each node. The numerical method and procedure are verified using the results of one and two dimensional analytic solutions and by other researchers. It is shown that the present method presents a consistent and stable results in either abrupt or ranged phase change problems. Moreover, the numerical results by the present method are hardly effected by the calculation time steps which otherwise are difficult to determine in most phase change problems. Finally, as a three-dimensional application, a T-shaped body of a phase change is presented and the temperature and enthalpy variation along the time are solved.

고에너지밀도용접 과정에서의 2차원 열유동에 대한 수치해석적 연구 (Numerical Study on the Two-Dimensional Heat Flow in High-Power Density Welding Process)

  • 박건중;장경천;김찬중
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1166-1174
    • /
    • 2000
  • This work presents a two-dimensional quasi-steady state model to study the fluid flow and heat transfer in high-power density welding process of thin AISI-304 stainless steel plates. The enthalpy method and the finite volume method were used for a numerical analysis of the mushy region phase change as well as the heat flow at the weld pool and the heat-affected zone. The results show that the mushy region distributed around the weld pool becomes wider downstream and the surface heat losses by convection and radiation can be significant factors in welding process especially when a welding speed is relatively low.

접촉 열저항을 고려한 합금주조의 응고과정 해석 (An analysis on the solidification process of alloy casting with a contact resistance)

  • 김우승;이관수;임익태;김광선
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.57-67
    • /
    • 1997
  • The solidification process of Al 4.5%Cu alloy is numerically studied in the presence of contact resistance between mold and cast. Natural convection is considered in the liquid and mushy regions. The porosity approach is applied to the mushy zone modeling and linear variation of the solid fraction on the temperature is assumed. Results show that the mushy region is wider in the case with a contact resistance compared to the perfect contact condition. The temperature of the cast with a temporal variation in the contact heat transfer coefficient changes very rapidly in the early stage of the casting process compared to that with constant contact heat transfer coefficient.

고액 공존영역 온도 열처리에 의한 Al-Si합금의 초정 구형화 (Sphering of Primary Dendrites in Al-Si alloys by Mushy Zone Heat Treatments)

  • 안중호;송인혁;한유동
    • 한국주조공학회지
    • /
    • 제16권6호
    • /
    • pp.513-522
    • /
    • 1996
  • In the present work, we have investigated the strain-induced melt activation (SIMA) process in Al-8%Si and Al-25%Si alloys. Primary dendrites were transformed into spherical microstrctures by mushy zone heat treatments of the cold-worked alloys. Various processing parameters which govern the sphering of the dendrites have been examined. The result showed that semi-solid alloys having a typically nondendritic spherical microstructure can be easily produced by this method.

  • PDF

엔탈피법을 이용한 원통형 몰드내에서의 상변화과정에 관한 연구 (A study on the phase change in the cylindrical mold by the enthalpy method)

  • 여문수;최상경;김문철
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.891-897
    • /
    • 1999
  • The heat transfer characteristics at the interface between the mold and the casting is one of the major factors for the solidification speed which determines the casting structures. The thermal resistance exists due to air gap formation at the mold/casting interface during the freezing process. In this study one dimensional Stefan problem with the air-gap resistance in the cylindrical mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method which is convenient in solving the Stefan problem with mushy zone. The present results agreed very well with those of previous papers. The effects of major parameters such as thermal conductivity, heat transfer coefficient of mold, on the thermal characteristics are investigated.

  • PDF

열전도에 의해 지배되는 이성분혼합물의 응고문제에 대한 해석해 (Analytical solution to the conduction-dominated solidification of a binary mixture)

  • 정재동;유호선;노승탁;이준식
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3655-3665
    • /
    • 1996
  • An analytical solution is presented for the conduction-dominated solidification of a binary mixture in a semi-infinite medium. The present approach differs from that of other solution by these four characteristics. (1) Solid fraction is determined from the phase diagram, (2) thermophysical properties in mushy zone are weighted according to the local solid fraction, (3) non-equilibrium solidification can be simulated and (4) the cooling condition of under-eutectic temperature can be simulated. Up to now, almost all analyses are based on the assumption of constant properties in mushy zone and solid fraction linearly with temperature or length. The validation for these assumptions, however, shows that serious error is found except some special cases. The influence of microscopic model on the macroscopic temperature profile is very small and can be ignored. But the solid fraction and average solid concentration which directly influence the quality of materials are drastically changed by the microscopic models. An approximate solution using the method of weighted residuals is also introduced and shows good agreement with the analytical solution. All calculations are performed for NH$_{4}$Cl-H$_{2}$O and Al-Cu system.

유도가열에 따른 SKH51의 반응고 미세조직 특성 연구 (The Characteristics of Microstructure in the Semi-solid State of SKH51 at High Frequency Induction Heating)

  • 이상용
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.126-133
    • /
    • 2012
  • Semi-solid forming of the high melting point alloys such as steel is a promising near-net shape forming process for decreasing manufacturing costs and increasing the quality of the final products. This paper presents the microstructure characteristics of SKH51 (high speed tool steel) during heating and holding in the mushy zone between $1233^{\circ}C$ and $1453^{\circ}C$, which has been measured by differential scanning calorimetry (DSC). The results of heating/holding experiments showed that the grain size and the liquid fraction increased gradually with temperature up to $1350^{\circ}C$. The drastic grain growth occurred at heating above $1380^{\circ}C$. The strain-induced melt-activated (SIMA) process has been applied to obtain globular grains in the billet materials. Working by mechanical upsetting and successive heating of SKH51 into the temperatures in the mushy zone resulted in globular grains due to recrystallization and partial melting.

원자로 노심용융물의 성분비 변화가 증기폭발에 미치는 영향 (An Influence of Corium Composition Variations on a Spontaneous Steam Explosion in Severe Accidents in a Nuclear Reactor)

  • 김종환;박익규;홍성완;민병태;송진호;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2041-2046
    • /
    • 2004
  • Recently series of steam explosion experiments have been performed in the TROI facility to identify the influence of corium compositions on the occurrence of a spontaneous steam explosion varying corium melt composition. The compositions of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 at weight percent of $UO_2$ to $ZrO_2$, and the mass of the corium was about 10kg. Corium melt at 0 : 100 weight percent (pure zirconia) caused a strong spontaneous steam explosion, and melt at 70 : 30 weight percent(eutectic corium) led to a weak steam spike, while melts at other compositions did not result in spontaneous steam explosions, when they came into contact with 67cm deep water pool at room temperature. It seems that the explosivity of pure zirconia is stronger than that of corium at other compositions and a steam explosion is not likely to occur with corium melts at non-eutectic compositions which are included in mushy zone region.

  • PDF

쌍롤식 연속주조공정에서의 난류유동 및 거시적응고 해석 (Analysis of the Coupled Turbulent Flow and Macroscopic Solidification in Twin-Roll Continuous Casting Process)

  • 김덕수;김우승;조기현
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.285-295
    • /
    • 2001
  • The transport phenomena in a wedge-shaped pool of twin-roll continuous caster are affected by the various operating parameters such as the melt-feed pattern, roll-gap thickness, melt-superheat, and casting speed. A computer program has been developed for analyzing the two-dimensional, steady conservation equations for transport phenomena during twin-roll continuous casting process in order to estimate the turbulent melt-flow, temperature fields, and solidification in the wedge-shaped pool. The turbulent characteristics of the melt-flow were considered using a low-Reynolds-number K-$\xi$ turbulence model. Based on the computer program, the effects of the different melt-feed patterns, roll-gap thicknesses, and superheats of melt on the variations of the velocity and temperature distributions, and the mushy solidification were examined. The results show that the liquidus line is located considerably at the upstream region, and in the lower region appear the well-mixed melt-flow and most widely developed mushy zone. Besides, the variation of melt-flow due to varying melt-feed patterns, affects mainly the liquidus line, and scarcely has effects on the solidus line in the outlet region.