• 제목/요약/키워드: Muscle act

Search Result 92, Processing Time 0.024 seconds

Change in the Gastro-Intestinal Tract by Overexpressed Activin Beta A

  • Kim, Mi-Nyeu;Kim, Young Il;Cho, Chunghee;Mayo, Kelly E.;Cho, Byung-Nam
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1079-1085
    • /
    • 2015
  • Originally, activins were identified as stimulators of FSH release in reproduction. Other activities, including secondary axis formation in development, have since been revealed. Here, we investigated the influence of activin ${\beta}_A$ on the body, including the gastro-intestinal (GI) tract. Initially, the activin ${\beta}_A$ protein was detected in the serum proportional to the amount of pCMV-rAct plasmid injected. The induced level of activin ${\beta}_A$ in muscle was higher in female than male mice. Subsequent results revealed that stomach and intestine were severely damaged in pCMV-rAct-injected mice. At the cellular level, loss of parietal cells was observed, resulting in increased pH within the stomach. This phenomenon was more severe in male than female mice. Consistent with damage of the stomach and intestine, activin ${\beta}_A$ often led to necrosis in the tip of the tail or foot, and loss of body weight was observed in pCMV-rAct-injected male but not female mice. Finally, in pCMV-rAct-injected mice, circulating activin ${\beta}_A$ led to death at supraphysiological doses, and this was dependent on the strain of mice used. Taken together, these results indicate that activin ${\beta}_A$ has an important role outside of reproduction and development, specifically in digestion. These data also indicate that activin ${\beta}_A$ must be controlled within a narrow range because of latent lethal activity. In addition, our approach can be used effectively for functional analysis of secreted proteins.

Research Trends on the Therapeutic Potential of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., for the Prevention of Sarcopenia (동충하초(Cordyceps spp.)의 유효 생리활성 성분인 cordycepin의 근감소증 예방에 대한 연구 동향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.482-490
    • /
    • 2022
  • Sarcopenia, a geriatric and multifactorial syndrome characterized by progressive systemic skeletal muscle disorder, may be associated with many comorbidities. Sarcopenia caused by a decrease in muscle mass and muscle strength is accompanied by the aggravation of various pathological conditions, and as life expectancy increases, its prevalence will continue to increase in the future. During the aging process, chronic oxidative stress and increased inflammatory responses act as major contributors to skeletal muscle loss. In addition, disruption of autophagy and apoptosis signals associated with dysfunction of mitochondria, which are essential for energy metabolism, accelerates the loss of muscle proteins. The pharmacological effect of cordycepin, a major physiologically active substance in the genus Cordyceps, which has been widely used for the prevention and treatment of various diseases for a long time, is directly related to its antioxidant and anti-inflammatory actions. In this review, we present the correlation between apoptosis, autophagy, protein catabolism, and satellite cell activity important for muscle regeneration using cordycepin for the prevention and treatment of sarcopenia. Although there have been few studies so far on the use of cordycepin for sarcopenia, previous studies suggest that cordycepin may contribute to inhibiting the age-related weakening of mitochondrial function and blocking the breakdown of muscle proteins. In addition, the protective effect of cordycepin on muscle cell damage is considered to be closely related to its antioxidant and anti-inflammatory activities. Therefore, it is considered that more continuous basic research is needed, focusing on the molecular biological mechanism of cordycepin, which is involved in the anti-aging of muscle cells.

The Effect of Carbon Monoxide on L-type Calcium Channel Currents in Human Intestinal Smooth Muscle Cells

  • Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.357-362
    • /
    • 2003
  • Carbon monoxide (CO) is low molecular weight oxide gas that is endogenously produced under physiological conditions and interacts with another gas, nitric oxide (NO), to act as a gastrointestinal messenger. The aim of this study was to determine the effects of exogenous CO on L-type calcium channel currents of human jejunal circular smooth muscle cells. Cells were voltage clamped with 10 mM barium ($Ba^{2+}$) as the charge carrier, and CO was directly applied into the bath to avoid perfusion induced effects on the recorded currents. 0.2% CO was increased barium current ($I_{Ba}$) by $15{\pm}2$% ($mean{\pm}S.E.$, p<0.01, n=11) in the cells. To determine if the effects of CO on barium current were mediated through the cGMP pathway, cells were pretreated with 1-H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{mu}M$), a soluble guanylyl cyclase inhibitor, and exogenous CO (0.2%) had no effect on barium currents in the presence of ODQ ($2{\pm}1$% increase, n=6, p>0.05). CO mediates inhibitory neurotransmission through the nitric oxide pathway. Therefore, to determine if the effects of CO on L-calcium channels were also mediated through NO, cells were incubated with $N^G-nitro-L-arginine$ (L-NNA, 1 mM), a nitric oxide synthase inhibitor. After L-NNA pretreatment, 0.2 % CO did not increase barium current ($4{\pm}2$% increase, n=6, p>0.05). NO donor, SNAP ($20{\mu}M$) increased barium current by $13{\pm}2$% (n=6, p<0.05) in human jejunal smooth muscle cells. These data suggest that CO activates L-type calcium channels through NO/cGMP dependant mechanism.

Pathophysiology of orthostatic tremor: a multiple case study (길입성 진전의 병태생리: 다증 증례 연구)

  • Seo, Man-Wook;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2002
  • Introduction : Orthostatic tremor develops in the legs while standing up with no weakness, pain or imbalance in the leg and the tremor is characteristically not observed when walking. However there have been some confusions about orthostatic tremor in several aspects. For the past ten years, we have observed 4 patients with orthostatic tremor. In each case tests were performed to investigate the following three important areas of inquiry about orthostatic tremor. Firstly, whether this disorder is an independent diagnostic entity or a variant of essential tremor. Secondly, whether the progress of this disorder is specifically related with standing posture. Lastly, the nature of the pathophysiologic mechanism behind the appearance of the tremor when standing after the lapse of a certain latent period and its disappearance upon the commencement of walking. Methods : Our 4 cases of orthostatic tremor were studied clinically, electrophysiologically, and pharmacologically. Electrophysiological tests included tremor spectrum test and electromyography. Results : We observed the presence of this tremor in several other tonic postures, as well as its absence, in a vertically lifted position from all our cases. Our cases registered a variable tremor frequency between 5 and 12 Hz according to the tremor spectrum test and EMG. Furthermore all our 4 cases demonstrated patterns of both synchronous EMG activity and alternating EMG activity at various times in homologous muscles of both legs. Orthostatic tremor was improved significantly with propranolol as well as clonazepam. Conclusions : From the results of our study we drew the following conclusions. It is probable that orthostatic tremor is simply a variant of essential tremor rather than being an independent diagnostic entity and that in most cases its development is specifically related with muscle contraction rather than merely with the act of standing. Furthermore we discovered a clue in the previously described neural control mechanism that the nuclear bag fibers in the muscle spindle have lag time of several seconds in their response to muscle strength and that their baseline does not reset fully in rapidly moving muscle. This neural control mechanism could offer sufficient explanation for the phenomena of tremor appearance when standing and disappearance when walking in orthostatic tremor.

  • PDF

Physicochemical Changes in Tilapia Oreochromis niloticus Muscle Induced by Acclimation to Sea Water (해수순화에 따른 틸라피아 근육의 물리화학적 변화)

  • Hwang, Gyu-Chul;Yoon, Ho-Dong;Ji, Cheong-Il;Park, Jeong-Heum;Kim, Seong-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.185-190
    • /
    • 1993
  • Tilapia cultured in fresh water were acclimated in sea water with daily increase of $5%_{\circ}$ of salinity and it was completely terminated at the 7th day (0 week). Each three tilapia acclimated were examined weekly based from 0 week to elucidate changes of chloride cells in gill, mineral contents and physical properties in muscle and biochemical characteristics in myofibrils. Chloride cells existed in gills were gradually developed in number and size by acclimation to sea water and became to almost constant state at the third week. Shearing value, compressing strength and content of minerals such as Mg, Na and K in muscle were showed remarkable increase by acclimation to sea water in comparison to those of muscle from tilapia reared in fresh water. Myofibrillar $Mg^{2+}-,\;Ca^{2+}-$ and $K^+(EDTA)-ATPase$ activities of tilapia acclimated in sea water also increased showing significant statistic difference (p<0.01) from those of tilapia reared in fresh water However. thermostability of myofibrils was dropped by acclimation to sea water. The increase of shearing value and compressing strength in the muscle of tilapia by acclimation to sea water would be attributed to the increase of myofibrillar ATPase activities which act to accelerate the decomposition rate of ATP. Therefore, it is suggested that this phenomenon associated with muscle contraction could be brought an improvement of texture of tilapia acclimated in sea water.

  • PDF

Characterization of proteases isolated from Kudoa septempunctata

  • Shin, Sang Phil;Zenke, Kosuke;Yokoyama, Hiroshi
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.175-179
    • /
    • 2015
  • Proteases play important roles in parasite development and host parasite interactions. The protease of Kudoa spp. has been recognized as a key factor of severe proteolysis of fish muscle post-mortem; however, there is little information available regarding the protease of Kudoa (K.) septempunctata, which was recently identified as a cause of food poisoning in humans. The present study was conducted to isolate and characterize proteases to elucidate the type of protease contained in the parasite and determine the optimal pH for protease activity. We confirmed the cysteine protease and metalloprotease produced by K. septempunctata. While the cysteine protease showed optimal activity at pH 5 that decreased rapidly with increasing pH, the optimal activity of metalloprotease was pH 7, and it remained stable from pH 6 to pH 8. These results indicate that the pH of cysteine protease is not proper for fish muscle postmortem, and that metalloprotease can act in human intestines. Overall, the present study provides important information that improves our understanding of the role of protease physiology and the subsequent food poisoning caused by K. septempunctata.

In vitro Selection of the 2'-Fluoro-2'-Deoxyribonucleotide Decoy RNA Inhibitor of Myasthenic Autoantibodies

  • Seo, Hwa-Seon;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.707-713
    • /
    • 2000
  • Myasthenia gravis (MG) is caused mainly by autoantibodies directed against acetylcholine receptors located in the postsynaptic muscle cell membrane. Using in vitro selection techniques, we isolated an RNA containing 2'-fluoro pyrimidines that can specifically and avidly ($K_d$ ~25 nM) bind rat monoclonal antibody called mAb198, which recognizes the main immunogenic region on the acetylcholine receptors. This RNA can act as a very effective decoy and block mAb198 binding to the receptors in vitro. Furthermore, this RNA decoy can prevent the antigenic modulation of the acetylcholine receptor caused by mAb198 in human muscle cell cultures with and $IC_{50} $of approximately $2.4{\mu}M$. These results indicate that the RNA selected in this study is a more potent decly inhibitor of myashthenic antibodies than the previously identified RNA with 2'-amino pyrimidines [11]. Moreover, this RNA cross-reacts with autoantibodies from patients with MG and can protect human cells from the effects of these antibodies. These observations have important implications for developing an antigen-specific treatment of autoimmune diseases including MG, which is based on decoy RNAs selected in vitro.

  • PDF

Job Analysis of the Nurses Who Work in Customized Visiting Health Care Services using DACUM Technique (맞춤형 방문건강관리사업 내 방문간호사의 직무분석)

  • Nam, Hye Kyung;Cho, Kyung Sook
    • Journal of muscle and joint health
    • /
    • v.22 no.3
    • /
    • pp.205-218
    • /
    • 2015
  • Purpose: This study was performed to analyze the visiting nurses' job using Developing a curriculum (DACUM). Methods: The DACUM committee with 6 visiting nurses participated in the workshop. In this workshop, the visiting nurses role was defined and their duties and tasks were identified. After content validation via the experts, the pilot test was conducted to 78 nurses. Results: A total of 13 duties and 82 tasks were identified on the DACUM chart which represented the importance, difficulty, and frequency of tasks with alphabet A, B, and C as its higher degree. Regarding duties, 'visiting nursing for high risk group' is the highest, while the lowest was 'public welfare events'. Regarding to tasks, 'discovering a new patient' was the highest, while 'selecting patients and offering medical supplies (nutritional supplement, patch)' was the lowest one. Conclusion: The results showed that visiting nurses working in the visiting health care service center were doing more various duties and tasks than those working according to 'Act on Long-term Care Insurance for the Aged'. The results can be used to develop training programs for visiting nurses and evaluation-scale of their job performance.

Relaxant Effect of 4-Aminopyridine on the Mesenteric Artery of Rat

  • Kim, Se-Hoon;Lee, Tae-Im
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.463-469
    • /
    • 2000
  • It has been well known that 4-aminopyridine (4-AP) has an excitatory effect on vascular smooth muscle due to causing membrane depolarization by blocking $K^+-channel$. However, we observed that 4-AP had an inhibitory effect on the mesenteric artery of rat. Therefore, we investigated the mechanism of 4-AP-induced vasorelaxation. The mesenteric arcuate artery and its branches were isolated and cut into ring. The ring segment was immersed in HEPES-buffered solution and its isometric tension was measured. 4-AP $(0.1{\sim}10\;mM)$ induced a concentration-dependent relaxation, which was unaffected by NO synthase inhibitor, $N^G-nitro-L-arginine$ methylester $(100\;{\mu}M)$ or soluble guanylate cyclase inhibitor, methylene blue $(100\;{\mu}M).$ Glibenclamide $(100\;{\mu}M)$, ATP-sensitive $K^+$ channel blocker, did not exert any effect on the 4-AP-induced vasorelaxation. 4-AP relaxed the sustained contraction induced by 100 mM $K^+$ or $Ca^{2+}$ ionophore, A23187 $(100\;{\mu}M)$ in a dose-dependent manner. In addition, 4-AP significantly decreased the phasic contractile response to norepinephrine in the absence of extracellular $Ca^{2+}$. However, 4-AP did not block the $^{45}Ca$ influx of rat aorta. From the above results, we suggest that 4-AP may not block the $Ca^{2+}$ influx through $Ca^{2+}-channel,$ but act as a nonspecific vasorelaxant in arterial smooth muscle.

  • PDF

Effect of Garlic Extract on the Activation Pattern of MAPK Signaling in the Rat Heart After a Bout Exercise (마늘추출물이 운동부하 흰쥐의 심장내 MAPK signaling 활성에 미치는 영향)

  • Lee, Jun-Hyuk;Chung, Kyung-Tae;Lee, Yang-Tae;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1299-1303
    • /
    • 2008
  • Since exercise training induces mechanical stress to the heart, we examined the activation pattern of mitogen-activated protein kinase(MAPK)s signaling pathway by immunohistochemistry. The immunoreactions of MAPKs signaling with c-fos and Schiff's reaction were increased in the cardiac muscle of exercised rat compared to normal one except immunoreaction for MEK1/2 and ERK1/2 and p38. However, the immunoreaction of phospho-JNK and phospho-p38 with early gene c-fos were arrested markedly in water extract of Alliium sativum (WEAS) treated rat compared to exercised one. Since MAPKs signaling does play a protective role in response to pathological stimulus in the heart, results in the present study suggest that WEAS may act as a alleviating agent for exercise-induced stress to. heart through regulating MAPKs signaling activation.