• Title/Summary/Keyword: Muscle Simulation

Search Result 103, Processing Time 0.024 seconds

Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation (기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1046-1053
    • /
    • 1999
  • The musculotendon model is presented to show the declines in muscle force and shortening velocity during muscle fatigue due to the repeated functional electrical stimulation (FES). It consists of the nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. The activation dynamics represents $Ca^{2+}$ binding and unbinding mechanism with troponins of cross-bridges in sarcoplasm. It has the constant binding rate or activation time constant and two step nonlinear unbinding rate or inactivation time constant. The contraction dynamics is the modified Hill type model to represent muscle force - length and muscle force - velocity relations. A muscle fatigue profile as a function of the intracellular acidification, pH is applied into the contraction dynamics to represent the force decline. The computer simulation shows that muscle force and shortening velocity decline in stimulation time. And we validate the model. The model can predicts the proper muscle force without changing its parameters even when existing the estimation errors of the optimal fiber length. The change in the estimate of the optimal fiber length has an effect only on muscle time constant in transient period not on the tetanic force in the steady-state and relaxation periods.

  • PDF

Evaluation of Masseter Muscle Volume after Contouring of Prominent Mandible Angle by Measurement of CT Scan Image

  • Kim, Yong Oock;Choi, Jong Woo
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.71-74
    • /
    • 2014
  • Purpose The prominent mandible angle, otherwise known as "square face", has been recognized as an aesthetic problem that needs correction by many in the Asian community. Many surgeons considered that mandible angle ostectomy alone, brings about hypotrophy of the masseter muscle. However, it was only proven indirectly (by clinical experience and histological animal experiments) and not objectively. In this study, we evaluated the volume of masseter muscle to prove the effect, objectively. Materials and method Computed tomography (CT) images were used to measure the masseter muscle volume of normal female group (n=6), and of female patient group n=8, preoperative and early & late postoperative volumes) presenting the symptom of prominent mandible angle. The data was analyzed statistically by two-sample t-test and paired t-test using SAS (version 8.2). Results In normal female group, volume average was $16,142{\pm}2,829.8mm^3$. In patient group, preoperative volume averaged $24,447{\pm}4,544.5mm^3$ (p<0.0001), early postoperative volume measured average of $31,966{\pm}50,421mm^3$ which is a 30% increase from the preoperative volume (p<0.0001). Late postoperative measurement was $20,202{\pm}4,092.3mm^3$, which is a 20% decrease from the preoperative volume (p<0.0006). Conclusion The bone reduction of prominent mandible angle induce the hypotrophic effect of masseter muscle after long term follow up (5 more months). This result mean that the result of mandible angle contouring surgery can be considered as combined effect of bony angle reduction and subsequent masseter muscle hypotrophy.

Development of Electrical Stimulator for Restoration of Locomotion in Paraplegic Patients (하반신마비 환자에서 보행기능의 복원을 위한 전기자극법의 개발)

  • 박병림;김민선
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.429-438
    • /
    • 1994
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate eleclromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocnemius m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher'stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical slimulator restored partially gait function in paraplegic patients.

  • PDF

A structure of musculotendon model with a fatigue profile of electrically stimulated skeletal muscle (전기자극이 가해진 골격근의 피로항을 갖는 근육 모델의 구조)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.611-613
    • /
    • 1998
  • A structure of musculotendon model with a fatigue profile is investigated. The Hill-type musculotendon model can predicts the decline in muscle force for a given fatigue profile. It consists of nonlinear activation and contraction dynamics based on the physiological concepts. It is normalized for generalization to deal with the various muscles. Muscle force generated by continuous tetanic electrical monophasic pulsewidth modulation stimulation is decreased in time. A fatigue profile is expressed by a function of intramuscular acidification and applied to the relationship between muscle force and shortening velocity in contraction dynamics. The results of computer simulation are well matched with data in a literature which are isometrically performed for knee extension muscles. Also change in optimal fiber length has an effect only on muscle time, constant not on the steady-state tetanic force.

  • PDF

3-D Inverse Dynamics Analysis of the Effect of Maximum Muscle Force Capacities on a Musculoskeletal System

  • Han, Kap-Soo;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1774-1779
    • /
    • 2014
  • It is known that muscle strength of human body can alter or deteriorate as aging. In this study, we present an inverse dynamics simulation to investigate the effect of muscle strength on performing the daily activities. A 3D musculoskeletal model developed in this study includes several segments of whole body, long and short muscles, ligaments and disc stiffness. Five daily activities such as standing, flexion, finger tip to floor, standing lift close and lifting flexed were simulated with varying the maximum muscle force capacities (MFC) of each muscle fascicles from 30 to $90N/cm^2$ with an increment of $30N/cm^2$. In the result, no solution can be obtained for finger tip to floor and lifting flexed with $30N/cm^2$. Even though the solution was available for standing lift close activity in case of $30N/cm^2$ capacity, many of muscle fascicles hit the upper bound of muscle strength which means that it is not physiologically possible to perform the acvities in reality. For lifing flexed, even the case of $60N/cm^2$ capaciy, represents the moderate healthy people, was not able to find the solutions, showing that 18 muscles among 258 muscle fascicles reached 100% of muscle capacity. The estimated results imply that people who have low muscle strength such as elders or rehabilitation patients were required higher muscle work to perform and maintain the same daily activities than healthy one.

A Modelling of Normal and Abnormal EMG Silent Period Generation of Masseter Muscle (교근에서의 정상 및 비정상 근전도 휴지기 발생 모델링)

  • Kim Tae-Hoon;Jeon Chang-Ik;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • This paper proposes a model of SP(silent period) generation in masseter muscle by means of computer simulation. The model is based on the anatomical and physiological properties of trigeminal nervous system. In determining the SP generation pathway, evoked SPs of masseter muscle after mechanical stimulation to the chin are divided into normal and abnormal group. Normal SP is produced by the activation of mechanoreceptors in periodontal ligament. The activation of nociceptors contributes to the latter part of normal SP, abnormal extended SP is produced. As a result, the EMG signal generated by a proposed SP generation model is similar to both real EMG signal including normal SP and abnormal extended SP with TMJ patients. The result of this study have shown differences of SP generation mechanism between subjects both with and without TMJ dysfunction.

Evaluation of the Biomechanical Characteristics of Ischemic Mitral Regurgitation: Effects of Asymmetric Papillary Muscle Displacement and Annular Dilation (허혈성 승모판막 폐쇄부전의 생체역학적 특성 분석: 비대칭적 유두근 변위와 판륜 확장의 영향)

  • Hong, Woojae;Kim, Hyunggun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.31-37
    • /
    • 2018
  • Ischemic mitral regurgitation (IMR) is the primary mitral valve (MV) pathology in the aftermath of myocardial infarction as a consequence of regional left ventricular (LV) remodeling. We investigated the effect of asymmetric papillary muscle (PM) displacement and annular dilation on IMR development. Virtual MV modeling was performed to create a normal human MV. Asymmetric PM displacement, asymmetric annular dilation, and the combination of these two pathologic characteristics were modeled. Dynamic finite element evaluation of MV function was performed across the complete cardiac cycle for the normal and three different IMR MV models. While the normal MV demonstrated complete leaflet coaptation, each pathologic MV model clearly revealed deteriorated leaflet coaptation and abnormal stress distributions. The pathologic MV model having both asymmetric PM displacement and annular dilation showed the worst leaflet malcoaptation. Simulation-based biomechanical evaluation of post-ischemic LV remodeling provides an excellent tool to better understand the pathophysiologic mechanism of IMR development.

A Study on the Development of a Calf Supporter for Improving Balance Capacity (균형능력 향상을 위한 종아리 서포터 개발에 관한 연구)

  • Hwang, Sunkyu;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.39-50
    • /
    • 2021
  • The purpose of this study was to investigate how wearing calf support and applying of electronic muscle simulation(EMS) affected the ability to balance. In this study, the one leg standing test for static balance and the Y balance test for dynamic balance were used to assess balance. At this time, the pressure of the calf support was different to produce two supporters, and a difference between wearing the support before, after, and after applying EMS was evaluated. Seven men in their 20s with healthy bodies were measured five times each with a five-minute break, taking into account muscle fatigue, and the difference between each variable was analyzed through a follow-up test using nonparametric statistical analysis. Studies have shown more difference from supporter B with a more appropriate pressure (mmgh) for increasing balance capability than from supporter A. In addition, it was confirmed that the use of EMS electrostimulation and support before measuring the balance capability resulted in a greater difference. The proper pressure (mmgh) supporters and EMS can increase the ability to balance, and these results can be expected to improve the balance ability of ordinary people in their daily lives.

Control of FES Cycling Considering Muscle Fatigue (근피로를 고려한 FES 싸이클링의 제어)

  • Kim Chul-seung;Hase Kazunori;Kang Gon;Eom Gwang-moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.207-212
    • /
    • 2005
  • The purpose of this work is to develop the FES controller that can cope with the muscle fatigue which is one of the most important problems of current FES (Functional Electrical Stimulation). The feasibility of the proposed FES controller was evaluated by simulation. We used a fitness function to describe the effect of muscle fatigue and recovery process. The FES control system was developed based on the biological neuronal system. Specifically, we used PD (Proportional and Derivative) and GC (Gravity Compensation) control, which was described by the neuronal feedback structure. It was possible to control of multiple joints and muscles by using the phase-based PD and GC control method and the static optimization. As a result, the proposed FES control system could maintain the cycling motion in spite of the muscle fatigue. It is expected that the proposed FES controller will play an important role in the rehabilitation of SCI patient.