• Title/Summary/Keyword: Muscle Reaction Force

Search Result 65, Processing Time 0.022 seconds

The Kinetic and EMG Analysis about Supporting Leg of Uke in Judo (유도 허벅다리걸기 기술 발휘 시 지지발에 대한 근전도 및 운동역학적 분석)

  • Park, Jong-Yul;Kim, Tae-Wan;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • The purpose of this study is to analyze the muscle activations and Ground Reaction Force(GRF) in university judo players, and provide the guide of training in Judo. Using surface electrode electromyography(EMG), we evaluated muscle activity in 5 university judo players during the Judo Uke Movements. Surface electrodes were used to record the level of muscle activity in the Tibialis Anterior, Rectus Femoris, Elector Spinae, Gluteus Maximus, Gastrocnemius muscles during the Uke. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The Uke was divided into four phases : Kuzushi-1, Kuzushi-2, Tsukuri, Kake. The results can be summarized as follows: 1. The effective Uke Movements needs to short time in the Kake Phase 2. The Analysis of Electromyography of Uke Movements in Supporting Leg; TA(Tibialis anterior) had Higher %RVC in the Kuzushi Phase, RF(Rectus Femoris) had Higher %RVC in the Tsukuri Phase, GM(Gluteus Maximus) had Higher %RVC in the Kake Phase 3. The ground reaction force for Z(vertical) direction was showed increase tendency in Kuzushi phase, Tsukuri phase and decrease tendency in Kake phase.

Effect of Gender Difference on the Functional Asymmetry during Preferred Walking Speed

  • Hyun, Seunghyun;Ryew, Checheong
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • We have not identified on what gender difference during gait at a pace of one's preferred velocity effects on the function of bilateral lower limb. This study was undertaken to investigate a difference of gait strategy by gender during gait at a one's preferred velocity of participants of adult male and female (n=20). Cinematographic data for motion analysis, ground reaction force (GRF) variables, and muscle volume of lower limb were analyzed. Significant difference of variables on movement of center of mass whole body, joint angle and moment of lower limb, and ground reaction force were tested by 2-way ANOVA analysis (P<0.05). Male group showed more muscle volume than female, and both showed more volume in dominant leg than non-dominant. Main effect by bilateral leg during gait showed higher difference in right than left leg in change of vertical position of center of mass (maximal, minimal). Main effect by gender in vertical change of position and velocity of center of mass showed higher difference in male than female (maximal, minimal). Hip joint showed more flexed and extended angle in male than female, and also dorsiflexion of ankle and flexion moment of knee and hip joint showed higher in male than female group. Therefore, this result was assumed that dominant showed furthermore more contribution for propulsive function than non-dominant leg. Gender difference showed in strategy controlling of biomechanical characteristics, and perhaps influenced by muscle volume.

Comparison of Lower Extremity Electromyography and Ground Reaction Force during Gait Termination according to the Performance of the Stop Signal Task (정지신호과제의 수행에 따른 보행정지 시 다리 근전도 및 지면반발력 비교)

  • Koo, Dong-Kyun;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the association between cognitive and motor inhibition by comparing muscle activity and ground reaction force during unplanned gait termination according to reaction time measured through the stop-signal task. Methods: Sixteen young adults performed a stop-signal task and an unplanned gait termination separately. The subjects were divided into fast and slow groups based on their stop-signal reaction time (SSRT), as measured by the stop-signal task. Electromyography (EMG) and ground reaction force (GRF) were compared between the groups during unplanned gait termination. The data for gait termination were divided into three phases (Phase 1 to 3). The Mann-Whitney U test was used to compare spatiotemporal gait parameters and EMG and GRF data between groups. Results: The slow group had significantly higher activity of the tibialis anterior in Phase 2 and Phase 3 than the fast group (p <0.05). In Phase 1, the fast group had significantly shorter time to peak amplitude (TPA) of the soleus than the slow group (p <0.05). In Phase 2, the TPA of the tibialis anterior was significantly lower in the fast group than the slow group (p <0.05). In Phase 3, there was no significant difference in the GRF between the two groups (p >0.05). There were no significant difference between the two groups in the spatiotemporal gait parameters (p >0.05). Conclusion: Compared to the slow group, the fast group with cognitive inhibition suppressed muscle activity for unplanned gait termination. The association between SSRT and unplanned gait termination shows that a participant's ability to suppress an incipient finger response is relevant to their ability to construct a corrective gait pattern in a choice-demanding environment.

Estimation of Joint Moment and Muscle Force in Lower Extremity During Sit-to-Stand Movement by Inverse Dynamics Analysis and by Electromyography (역동역학해석 및 근전도 신호를 이용한 앉기-서기 동작에서의 하지 관절 모멘트 및 근력 예측)

  • Kim, Yoon-Hyuk;Phuong, Bui Thi Thanh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1345-1350
    • /
    • 2010
  • Sit-to-stand movement is a basic movement in daily activities. On the basis of this movement, the biomechanical functions of a person can be evaluated. The study of the joint kinematics, moment, and muscle coordination is necessary to understand the characteristics of the sit-to-stand movement. We have developed a motion-based program for inverse dynamics analysis and the electromyogram-based program for muscle force prediction. The joint kinematics and the kinetic results estimated on the basis of obtained motion data, ground reaction force, and electromyogram signals were compared with those reported in previous studies, and the muscle forces determined by the two methods were compared with each other. The methods and programs developed in this study can be used to understand biomechanics and muscle coordination involved in basic movements in daily activities.

Musculoskeletal Model for Assessing Firefighters' Internal Forces and Occupational Musculoskeletal Disorders During Self-Contained Breathing Apparatus Carriage

  • Wang, Shitan;Wang, Yunyi
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.315-325
    • /
    • 2022
  • Background: Firefighters are required to carry self-contained breathing apparatus (SCBA), which increases the risk of musculoskeletal disorders. This study assessed the newly recruited firefighters' internal forces and potential musculoskeletal disorders when carrying SCBA. The effects of SCBA strap lengths were also evaluated. Methods: Kinematic parameters of twelve male subjects running in a control condition with no SCBA equipped and three varying-strapped SCBAs were measured using 3D inertial motion capture. Subsequently, motion data and predicted ground reaction force were inputted for subject-specific musculoskeletal modeling to estimate joint and muscle forces. Results: The knee was exposed to the highest internal force when carrying SCBA, followed by the rectus femoris and hip, while the shoulder had the lowest force compared to the no-SCBA condition. Our model also revealed that adjusting SCBA straps length was an efficient strategy to influence the force that occurred at the lumbar spine, hip, and knee regions. Grey relation analysis indicated that the deviation of the center of mass, step length, and knee flexion-extension angle could be used as the predictor of musculoskeletal disorders. Conclusion: The finding suggested that the training of the newly recruits focuses on the coordinated movement of muscle and joints in the lower limb. The strap lengths around 98-105 cm were also recommended. The findings are expected to provide injury interventions to enhance the occupational health and safety of the newly recruited firefighters.

ORTHODONTIC TREATMENT RELATED TO FACIAL PATTERNS (안모유형에 따른 교정치료)

  • Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.18 no.2
    • /
    • pp.475-488
    • /
    • 1988
  • Certain malocclusion are associated with specific "facial type," and it is important for the clinician to classify the common facial characteristic of each patient. Because the reaction to treatment mechanics and the stability of the denture is depended upon the analysis of the facial pattern. Basically, there are 3 district facial types or patterns under which almost all malocclusion can be classified. 1. mesofacial is the most average growth. 2. brachyfacial which is a horizontal growth pattern has a week muscle, with dental arch, deep bite. 3. dolichofacial which is a vertical growth pattern has a strong muscle, narrow dental arch, open bite. Brachyfacial pattern show a resistant to mandibular rotation during treatment can accept a more protrusive denture and are prominantly nonextraction, whereas dolichofacial patterns tend to open during treatment require a more retracted denture in order to assure post-treatment stability. Brachyfacial pattern would better treat to use extrusive force system, whereas dolichofacial pattern treat to use intrusive force system with head gear and intermaxillary elastics.

  • PDF

Ground Reaction Force and Muscle activity in Children with Down Syndrome during Vertical Jump (다운증후군 아동의 수직점프 동작 수행 시 지면반력과 근육활동의 규명)

  • Yu, Yeon-Joo;Lim, Bee-Oh;Kim, Suk-Bum;Nam, Ki-Jung;Choi, Bum-Kwon;Kim, Min-Hoe
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.107-115
    • /
    • 2008
  • The purpose of this study was to investigate muscle activity and vertical ground reaction force(F) in children with Down syndrome(DS) during vertical jump. Six DS and one healthy child performed vertical jump. Four muscles(Biceps femoris, Rectus femoris, Tibialis anterior & Gastrocnemius) and F were analyzed. Gastrocnemius in DS showed lower muscle activity in a propulsive phase. Impulse during 0.3sec before toe-off in DS displayed lower value than that in the healthy child. The second peak of F in DS occurred later than that in the healthy child, so DS performed landing with their knee more flexed. The first and second peak of F and loading rate to the second peak of F in DS showed lower value than those in the healthy child. Therefore, DS might have lower ability to absorb the force while landing from a vertical jump.

A Biomechanical Analysis of Lower Extremity Segment dur ing the Fouette en dehors Performed by Ballet Dancers (발레 무용수의 Fouette en dehors동작 시 하지분절에 대한 생체역학적 분석)

  • Lee, Jin;Oh, Cheong-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • The purpose of this study was to quantitatively examine the biomechanical variables of Fouette turns for expert and beginner ballet dancers and to determine the difference in the variables between the two groups. sixteen female ballet dancers participated in this study. They were divided into an expert group(age, $25.38{\pm}1.92$ years; height, $168.38{\pm}4.66$ cm; mass, $49.63{\pm}4.41$ kg) and a beginner group(age, $20.88{\pm}1.13$ years; height, $161.63{\pm}7.42$ cm; mass, $48.88{\pm}3.64$ kg) depending on their ballet experience. Descriptive data were expressed as mean ${\pm}$ standard deviation (SD) for all variables including the duration, displacement of the center of the body, velocity of the center of the body, angle of the body segments, angular velocity of the body segments, ground reaction force, lower extremity torque, muscle activity, body weight, age, and body mass. An independence t-test was conducted to determine how the following variables differed between the beginners and experts: duration, displacement of the center of the body, velocity of the center of the body, angle of the body segments, angular velocity of the body segments, ground reaction force, lower extremity torque, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the experts scored high on the biomechanical variables, although all the variables were not significant. Significant differences were found in the angle of body segments, angular velocity of the body segments, lower extremity torque, and muscle activity(p<0.05). The findings of this study demonstrate that the experts have the required skill to make an improved Fouette turn. The findings may also help ballet dancers to learn and understand the Fouette turn.

The Effect of the Insole Height on Lower Limb Joint Angle and Muscle Activity at Landing when the Maximal Ground Reaction Force of Male in Their 20s (착지 동작 시 깔창 높이가 20대 남성의 하지 관절 각도와 근활성도에 미치는 영향)

  • Yoo, Kyung-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.132-139
    • /
    • 2020
  • The purpose of this study is to analyze the effect of the height and insole height upon landing on the lower limb joint angle and muscle activity during maximum ground repulsion in young men. For a male in their twenties, a landing motion was performed with a force plate on a 40cm-high platform by wearing one of 0, 3, 5cm polyurethane insoles per week for a total of 3 weeks. During the landing motion, the joint angle of the lower extremities and the muscle activity of the rectus femoris, biceps femoris, anterior tibialis and calf muscles were measured during the maximum ground repulsion. In order to compare the changes in the joint angle and muscle activity of the lower limbs according to the height of the insole, a one-way ANOVA with repetitive factors was performed. As a result of the analysis of the lower limb joint angle, the higher the height of the insole affected the angle of the left ankle joint. As a result of the muscle activity analysis, the higher the height of the insole affected the right anterior tibialis muscle and biceps femoris. It is thought that it is possible to protect the body when landing through sufficient muscle strength increase of the lower limb muscles. As the angle of the affected muscle and lower limb joint may be different depending on the type of insole, it is considered necessary to study it.

In According to Walking Time The Character of the Ground Reaction Force in Elderly OA(Osteo-Arthritis) Female Patient (노인 여성 관절염 환자의 보행시간에 따른 지면반력의 특징)

  • Lee, Jung-Ho;Seo, Jung-Suk;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2007
  • The purpose of this study was to analyze and compare the effect of gait time on the gait patterns in elderly female OA and non-OA patients. The intensity of the subjects joint pain was surveyed by using WOMAC. Twelve subjects participated in this study. Measurements were taken for every the 10 minutes for 30 minutes after walking by a force plate. The following variables were recorded; double stance support time, Fx, Fy, Fx_time, Fz and so on. From the investigation of these variables the following was observed and concluded. The Fz values for the OA group was 1.01BW at the start and after 30 minutes was 1.04BW on the other hand the non-OA group's Fz1 was 1.08BW and 1.10BW. There was no significant difference calculated between the two groups and at the start and end of the experiment about all the variables. Therefore, it is concluded that there was no negative effect caused by walking for the 30 minutes and that it was an effective way of strengthen both respiratory and muscle function.