• Title/Summary/Keyword: Muscle Atrophy

Search Result 354, Processing Time 0.034 seconds

Germinated Rhynchosia nulubilis Hydrolysate Ameliorates Dexamethasone-induced Muscle Atrophy by Downregulating MAFbx Expression in C2C12 Cells and C57BL/6 Mice (발아 서목태 가수분해물의 근위축 억제 효과)

  • Won Keong Lee;Eun Ji Kim;Sang Gon Kim;Young Min Goo;Young Sook Kil;Seung Mi Sin;Min Ju Ahn;Min Cheol Kang;Young-Sool Hah
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.277-286
    • /
    • 2023
  • Sarcopenia is the age-related loss of muscle mass and function. It is a natural part of aging and can lead to decreased mobility and increased frailty. The ubiquitin-proteasome pathway, which is involved in muscle protein degradation, is closely linked to sarcopenia. Germinated Rhynchosia nulubilis hydrolysate (GRH) has been reported to have anti-inflammatory and antioxidant properties, but there have been no reports on its inhibitory effect on muscle reduction. However, no study has yet explored the relationship between GRH and muscle loss inhibition. In this study, we evaluated the effects of GRH on muscle atrophy inhibitory activity in dexamethasone (Dexa)-induced muscle atrophy C2C12 myotubes and mouse models. Moreover, we identified a molecular pathway underlying the effects of GRH on skeletal muscle. May Grunwald-Giemsa staining showed that the length and area of myotubes increased in the groups treated with GRH. In addition, the GRH-treated group significantly reduced the expression of muscle ring finger protein 1 and muscular atrophy F-box (MAFbx) in the Dexa-induced muscular atrophy C2C12 model. GRH also improved muscle strength in C57BL/6 mice with Dexa-induced muscle atrophy, resulting in prolonged running exhaustive time and increased grip strength. We found that muscle strengthening by GRH was correlated with a decreased expression of the MAFbx gene in mouse muscle tissue. In conclusion, GRH can attenuate Dexa-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway via downregulation of the MAFbx gene expression.

The Effects of Stimulation of Acupuncture Point ST36 on Disuse Muscle Atrophy in Rats (흰쥐 발목관절고정으로 유발된 장딴지근 위축에 경혈점 자극이 미치는 효과)

  • Kim, Bumhoi;Lee, Taesik
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.4
    • /
    • pp.75-82
    • /
    • 2018
  • Purpose : The present study tested the hypothesis that acupressure at Zusanli(ST36) would attenuate immobilization-induced skeletal muscle atrophy. Methods : The left hind limb was immobilized using casting tape (ST36 group, n=10), and the animals were then treated daily with a pressure needle at ST36. Ten untreated animals with hind limb immobilization and no treatment served as a control group (n=10). After 2 weeks of immobilization, The body weight changes of rats were evaluated and the morphologies of the right and left gastrocnemius muscles in both the ST36 and control groups were assessed by hematoxylin and eosin staining. The levels of malondialdehyde (MDA) of gastrocnemius muscles were observed. Results : The acupressure at the accupoint of Zusanli conferred significant protection against reductions in left gastrocnemius muscle weights and average cross-sectional muscle areas in the ST36 group as compared with those in the control group. Moreover, the acupressure at the ST36 point significantly reduced malondialdehyde (MDA) activity in the gastrocnemius muscles as compared with that in the control group. Conclusion : These results suggest that acupressure at the accupoint of Zusanli provides protection against immobilization-induced muscle atrophy by decreasing MDA activity in gastrocnemius muscles.

The Change of Muscle Fiber by Aquatic Exercise on Rats Induced by Steroids Injection (스테로이드를 투여한 흰쥐에서 수중운동에 의한 근 섬유의 변화)

  • Yoon, Se-Won;Lee, Jung-Woo;Choi, Suk-Joo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.1 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • The purpose of this study was to know the effect of aquatic-exercise on muscle atrophy which induced by steroid injection. The forty-eight Sparague-Dawley adult male rats were assigned to the 4 groups; GroupI(distilled water injection), GroupII(steroid injection), GroupIII(distilled water injection and aquatic exercise), GroupIV(steroid injection and aquatic exercise). We observed their body weight, histological change by PAS stein. The results of this study were as follows; 1. After 2 weeks, the change of weights appeared that non-steroid injection groups increase weight and steroid injection groups decreased weight hasty. after 4 weeks, weights recovered from weight before test. It was possible to explain the change of weight by type II muscle fiber increase. 2. In histological change of muscle fibers, atrophy didn't observed in test group I, because type II muscle fibers were developed well. we observed not only injury of muscle fiber and muscle atrophy but specifically grouping type I muscle fiber in test group II. normal arrangement of muscle fibers were visible in test group and type II muscle fibers increased. we could observe muscle recovery because of type II muscle fibers increase in test group IV. therefore, it was seem that type II cell was recovering through aquatic exercise.

  • PDF

The Effects of Acupuncture at GB34 on Disuse Muscle Atrophy in Rats (흰쥐의 불용성 근위축에 양릉천 자침이 미치는 효과)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • Objectives Disuse muscle atrophy occurs in response to pathologies such as joint immobilization, inactivity or bed rest. Muscle disuse is accompanied by an increase in apoptotic signaling, which mediates some of the responses to unloading in the muscle. GB34 (Yanglingquan) is a acupuncture point on the lower leg and one of the most frequently used points in various skeletomuscular diseases. In this study, the hypothesis that the acupuncture at GB34 could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The left hindlimb immobilization was performed with casting tape in both GB34 group (n=10) and Control group (n=10). The rats in GB34 group were daily treated with acupuncture at GB34. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both GB34 and Control groups were assessed by hematoxylin and eosin staining. To investigate the immobilization-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. Results GB34 group represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. The acupuncture at GB34 significantly reduced the immunoreactivity of BAX and increased the immunoreactivity of Bcl-2 in gastrocnemius muscle compared with Control group. Conclusions These results suggest that the acupuncture at GB34 has protective effects against immobilization-induced muscle atrophy by regulating the activities of apoptosis-associated BAX/Bcl-2 proteins in gastrocnemius muscle.

Effect of DHEA on Hindlimb Muscles in a Focal Cerebral Ischemia Model Rat (DHEA 투여가 국소 뇌허혈 모형 쥐의 하지근에 미치는 효과)

  • 안경주
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.1
    • /
    • pp.150-159
    • /
    • 2004
  • Purpose: The purpose of this study was to determine the effect of DHEA on hindlimb muscles(soleus, plantaris and gastrocnemius) in a focal brain ischemia model rat. Method: Twenty-seven male Sprague-Dawley rats were randomly divided into three groups: CINS(cerebral ischemia + normal saline), CIDH(cerebral ischemia + DHEA), or SHNS(sham + normal saline). Both the CINS and CIDH groups underwent a transient right middle cerebral artery occlusion operation. In the SHNS group, a sham operation was done. 0.34mmol/kg DHEA was administered daily by an intraperitoneal injection for 7days. Results: The muscle weight, muscle fiber cross-sectional area of the Type I muscle fiber of soleus and Type II muscle fiber of plantaris and gastrocnemius, myofibrillar protein content of gastrocnemius, and muscle strength in the CINS group decreased compared with the SHNS group. The muscle weight, muscle fiber cross-sectional area of the Type II muscle fiber of plantaris and gastrocnemius, myofibrillar protein content of soleus, and muscle strength in the CIDH group increased compared with the CINS group. Conclusion: It was identified that muscle atrophy could be induced during 7 days after a cerebral infarction, and DHEA administration during the early stages of a cerebral infarction might attenuate muscle atrophy.

Effects of Antioxidant on Reduction of Hindlimb Muscle Atrophy Induced by Cisplatin in Rats (항산화제가 시스플라틴에 의해 유발된 쥐의 뒷다리근 위축 경감에 미치는 영향)

  • Kim, Jin Il;Choe, Myoung-Ae
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.4
    • /
    • pp.371-380
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the effects of Cu/Zn SOD on reduction of hindlimb muscular atrophy induced by cisplatin in rats. Methods: Forty-two rats were assigned to three groups; control group, Cisplatin (CDDP) group and cisplatin with Cu/Zn SOD (CDDP-SOD) group. At day 35 hindlimb muscles were dissected. Food intake, activity, withdrawal threshold, muscle weight, and Type I, II fiber cross-sectional area (CSA) of dissected muscles were measured. Relative SOD activity and expression of MHC and phosphorylated Akt, ERK were measured after dissection. Results: Muscle weight and Type I, II fiber CSA of hindlimb muscles in the CDDP group were significantly less than the control group. Muscle weight and Type I, II fiber CSA of hindlimb muscles, food intake, activity, and withdrawal thresholds of the CDDP-SOD group were significantly greater than the CDDP group. There were no significant differences in relative SOD activities of hindlimb muscles between the CDDP-SOD and CDDP groups. MHC expression and phosphorylated Akt, ERK of hindlimb muscles in the CDDP-SOD group were significantly greater than the CDDP group. Conclusion: Cu/Zn SOD attenuates hindlimb muscular atrophy induced by cisplatin through increased food intake and activity. Increment of phosphorylated Akt, ERK may relate to attenuation of hindlimb muscular atrophy.

Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes (C2C12 근관세포에서 상엽에 의한 AMPK의 불활성화와 AICAR로 유도된 근위축 억제의 연관성에 관한 연구)

  • Lee, Yu Sung;Kim, Hong Jae;Jeong, Jin-Woo;Han, Min-Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.435-443
    • /
    • 2018
  • AMP-activated protein kinase (AMPK) functions as a metabolic master through regulating and restoring cellular energy balance. In skeletal muscle, AMPK increases myofibril protein degradation through the expression of muscle-specific ubiquitin ligases. Mori Folium, the leaf of Morus alba, is a traditional medicinal herb with various pharmacological functions; however, the effects associated with muscle atrophy have not been fully identified. In this study, we confirmed the effects of AMPK activation by examining the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, on the induction of atrophy and expression of atrophy-related genes in C2C12 myotubes. We also investigated the effects of the ethanol extract of Mori Folium (EEMF) on the recovery of AICAR-induced muscle atrophy in C2C12 myotubes. It was found that exposure to AICAR resulted in the stimulation of Forkhead box O3a (FOXO3a); an up-regulation of muscle-specific ubiquitin ligases such as Muscle Atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and a down-regulation of muscle-specific transcription factors, such as MyoD and myogenin; with the activation of AMPK. In addition, AICAR without cytotoxicity indicated a decrease in diameter of C2C12 myotubes. However, treatment with EEMF significantly suppressed AICAR-induced muscle atrophy of C2C12 myotubes in a dose-dependent manner as confirmed by a decrease in myotube diameter, which is associated with a reversed stimulation of FOXO3a by the inhibition of AMPK activation. These results indicate that the activation of AMPK by AICAR induces muscle atrophy, and EEMF has preeminent effects on the inhibition of AICAR-induced muscle atrophy through the AMPK signaling pathway.

Effects of Schisandrae Fructus Supplementation on Apoptosis and Inflammatory Response in Gastrocnemius Muscle of Dexamethasone-Induced Muscle Atrophy Mice (Dexamethasone에 의하여 유발된 근육 위축 생쥐의 비복근 근섬유에서 apoptosis와 염증 반응에 미치는 오미자 추출물의 영향)

  • Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.363-374
    • /
    • 2017
  • Dried fruits of Schizandra chinensis Baillon, Fructus Schisandrae, have been widely used for many years to prevent and treat various diseases in Asian countries including Korea and Russia. It has recently been reported that extracts of Fructus Schisandrae are effective for controlling muscle and skeletal diseases. In this study, we investigated the efficacy of ethanol extract of Fructus Schisandrae (EEFS) on apoptosis and inflammatory response in gastrocnemius muscle of dexamethasone-induced catabolic muscle atrophy mice as part of natural substance discovery and functional analysis for improving muscle function. According to the results of this study, EEFS supplementation attenuated body weight gains and suppressed calf thickness loss in dexamethasone-induced muscle atrophic mice. Gastrocnemius muscle immunohistochemistry showed that expression of caspase-3 and poly(ADP-ribose) polymerase, which are representative apoptotic markers, was markedly increased in dexamethasone control mice; however, their expression was effectively reduced in the EEFS-fed mice. EEFS supplementation also prevented dexamethasone-induced increases in immunoreactivity of muscle fibers for myostatin, an important negative regulator of skeletal muscle mass. In addition, EEFS significantly normalized the increased numbers of nitrotyrosine, 4-hydroxynonenal and inducible nitric oxide synthase-positive muscle fibers compared to that found in dexamethasone control mice. These results suggest that EEFS protects dexamethasone-induced muscular atrophy by decreasing apoptosis and inflammatory responses, and EEFS is more likely to be developed as a muscle strengthening agent.

The Effects of Dokhwalgisaeng-tang against Disuse Muscle Atrophy in Gastrocnemius of Rats

  • Gong, Han Mi;Lee, Yun Kyu;Lee, Bong Hyo;Kim, Jae Soo;Lee, Hyun-Jong
    • Journal of Acupuncture Research
    • /
    • v.35 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • Background: The purpose of this study was to examine the effect of Dokhwalgisaeng-tang on immobilization-induced muscle atrophy. Methods: Twenty young male Sprague-Dawley rats were divided into 2 groups. The rats in Dokhwalgisaeng-tang group were orally administered Dokhwalgisaeng-tang water extract, and the rats in the control group were given saline only. Hind limb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. No intervention was performed on the right leg which was used as an intact region. After 2 weeks of immobilization, all animals were sacrificed, and the gastrocnemius muscle was dissected from both legs and weighed. The morphology of the right and the left gastrocnemius muscle in both the Dokhwalgisaeng-tang and the control group was assessed by hematoxylin and eosin staining. The muscle cross sectional area was examined by image analysis (Axiovision LE software). In addition, immunohistochemical staining was carried out using the free-floating method, and the number of apoptotic related proteins were counted (anti-BAX, anti-Bcl-2). Results: Dokhwalgisaeng-tang showed a significant protective effect against the reduction of the left gastrocnemius muscle (weight and muscle cross sectional area) compared with the control group. Moreover, the treatment with Dokhwalgisaeng-tang significantly reduced protein expression of BAX and increased protein expression of Bcl-2 in the gastrocnemius muscle compared with the control group. Conclusion: Dokhwalgisaeng-tang showed protective effects against disuse muscle atrophy, potentially through altered BAX and Bcl-2 protein expression in the gastrocnemius muscle.

Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy

  • Ji-Soo Jeong;Jeong-Won Kim;Jin-Hwa Kim;Chang-Yeop Kim;Je-Won Ko;Tae-Won Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.52-58
    • /
    • 2024
  • Background: Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in in vivo and in vitro. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated. Methods: We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation. Results: KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis. Conclusion: Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.