• Title/Summary/Keyword: Muscarinic Receptor

Search Result 164, Processing Time 0.044 seconds

Distribution of the Muscarinic Cholinergic Receptors and Characterization in the Brain of Wistar Rats and Spontaneously Hypertensive Rats (SHR Strain) by Digital Autoradiography (Digital Autoradiographic System을 이용한 선천성고혈압에서의 Muscarinic Cholinergic Receptor 분포 및 특성)

  • Sohn, In;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.28-34
    • /
    • 1993
  • Using in vitro autoradiography with a digital autoradiography system and radioreceptor assay, the distribution and the binding characteristics of the muscarinic cholinergic receptors (mAChR) were studied in regions of rat brain. Radioreceptor assay revealed that mAChR could be measured with saturation binding assay in the brain and heart homogenates: No difference in Kd or Bmax of the brain or heart was found between the normal Wistar rats and SHR rats. Specific binding of $^3H$ quinuclidinyl benzilate (QNB) increased and saturation was reached by 2 hours after incubation with slide-mounted brain tissue. The distribution of mAChR was heterogeneous along the fields of brain. Affinity (Kd) of mAChR was not different significantly among cortex, hippocampus and caudate-putamen. No difference was found between normal rats and SHR strain. More receptors (Bmax) were found in the cortex and hippocampus than in the caudate-putamen in normal rats. More receptors were found in the cortex and caudate-putamen in SHR rats than in normal rats. Radioreceptor assay and digital autoradiographic analysis of affinity and number of mAChR gave the same results. With the above findings, we concluded that we could use digital autoradiographic system with $^3H$-QNB in the characterization of mAChR of rats and that the cortex and caudate-putamen of SHR strain rats have more receptors than those of normal rats.

  • PDF

Excitatory Effect of $M_1$ Muscarinic Acetylcholine Receptor on Automaticity of Mouse Heart

  • Woo Sun-Hee;Lee Byung Ho;Kwon Kwang-Il;Lee Chin Ok
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.930-935
    • /
    • 2005
  • We have investigated the effects of relatively high concentration of carbachol (CCh), an agonist of muscarinic acetylcholine receptor (mAChR), on cardiac automaticity in mouse heart. Action potentials from automatically beating right atria of mice were measured with conventional microelectrodes. When atria were treated with $100{\mu}M$ CCh, atrial beating was immediately arrested and diastolic membrane potential (DMP) was depolarized. After exposure of the atria to CCh for $\~4 min$, action potentials were regenerated. The regenerated action potentials had lower frequency and shorter duration when compared with the control. When atria were pre-exposed to pirenzepine $(1{\mu}M)$, an $M_1$ mAChR antagonist, there was complete inhibition of CCh-induced depolarization of DMP and regeneration of action potentials. Pre-exposure to AFDX-116 (11 ({2-[(diethylamino)-methyl]-1-piperidyl}acetyl)-5, 11-dihydro-6H-pyridol[2,3-b][1,4] benzodiazepine-6-one base, $1{\mu}M$), an $M_2$ mAChR antagonist, failed to block CCh-induced arrest of the beating. However, prolonged exposure to CCh elicited gradual depolarization of DMP and slight acceleration in beating rate. Our data indicate that high concentration of CCh depolarizes membrane potential and recovers right atrial automaticity via $M_1$ mAChR, providing functional evidence for the role of $M_1$ mAChR in the atrial myocytes.

Functional Properties of Human Muscarinic Receptors Hm1, Hm2 and Hm3 Expressed in a Baculovirus/Sf9 Cell System

  • Woo, Hyun-Ae;Woo, Yae-Bong;Bae, Seung-Jin;Kim, Hwa-Jung
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 1999
  • The human muscarinic acetylcholine receptor (mAChR) subtypes Hml, Hm2 and Hm3 have been expressed in insect cells (Spodoptera frugiperda, Sf9) using the baculovirus expression system. Expression of relevant DNA, transcript and receptor proteins was identified by PCR, Northern blotting and [$^{3}H$]QNB binding, respectively. As assessed by [$^{3}H$]QNB binding sites, yields of muscarinic receptors in membrane preparations in this study were as about 5-20 times high as those in mammalian cells reported in previous studies. The [$^{3}H$]QNB competition binding studies with well-known subtype-selective mAChR antagonists showed that the receptors expressed in Sf9 cells retain the pharmacological characteristics expected for the ml , m2 and m3 muscarinic receptors. The ml-selective antagonist, pirenzepine, displayed a considerably higher affinity for Hml by 110-fold and 35-fold than for Hm2 and Hm3, respectively, The m2-selective methoctramine displayed a significantly higher affinity for Hm2 than for Hml and Hm3 (10- and 26-fold, respectively). p-F-HHSiD exhibited high affinity for Hm3 that is not significantly different from those for Hml, but 66-fold higher than its affinity for Hm2. The functional coupling of the recombinant receptors to second messenger systems was also examined. While both Hml and Hm3 stimulated phosphoinositide hydrolysis upon activation by carba-chol, Hm2 produced no response. On the other hand, activation of mAChRs induced the inhibition of forsko-lin-stimulated cyclic AMP formation in Hm2-expressing cells, whereas the significant dose-dependent increase in or poor response on cyclic AMP formation were produced in Hml or Hm3-expressing cells, respectively. These results indicate the differential coupling of recombinant Hml, Hm2 and Hm3 receptors expressed in SF9 cells to intracellular signalling system.

  • PDF

ERK1/2 activation by the C. elegans muscarinic acetylcholine receptor GAR-3 in cultured mammalian cells involves multiple signaling pathways

  • Shin, Young-Mi;Shin, Young-Ju;Kim, Seung-Woo;Park, Yang-Seo;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.155-160
    • /
    • 2010
  • Extracellular signal-regulated kinases 1/2 (ERK1/2) play important roles in a variety of biological processes including cell growth and differentiation. We have previously reported that GAR-3 activates ERK1/2 via phospholipase C and protein kinase C, presumably through pertussis toxin (PTX)-insensitive Gq proteins, in Chinese hamster ovary (CHO) cells. Here we provide evidence that GAR-3 also activates ERK1/2 through PTX-sensitive G proteins, phosphatidylinositol 3-kinase (PI 3-kinase), and Src family kinases in CHO cells. We further show that in human embryonic kidney (HEK293) cells, epidermal growth factor receptor and Ras are required for efficient ERK1/2 activation by GAR-3. Taken together, our data indicate that GAR-3 evokes ERK1/2 activation through multiple signaling pathways in cultured mammalian cells.

Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

  • Lee, Ji Hwan;Go, Donghyun;Kim, Woojin;Lee, Giseog;Bae, Hyojeong;Quan, Fu Shi;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water ($4^{\circ}C$) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of $M_2$ (methoctramine, $10{\mu}g$) and $M_3$ (4-DAMP, $10{\mu}g$) receptor antagonist, but not $M_1$ (pirenzepine, $10{\mu}g$) receptor antagonist, blocked the effect. Also, spinal administration of $5-HT_3$ (MDL-72222, $12{\mu}g$) receptor antagonist, but not $5-HT_{1A}$ (NAN-190, $15{\mu}g$) or $5-HT_{2A}$ (ketanserin, $30{\mu}g$) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a significant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic ($M_2$, $M_3$) and serotonergic ($5-HT_3$) receptors.

Ligand Binding Properties of Muscarinic Acetylcholine Receptors in Caenorhabditis elegans

  • You, Suck-Jong;Choi, Jung-Do;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.525-529
    • /
    • 1996
  • Ligand binding properties of muscarinic acetylcholine receptors (mAChRs) in the nematode Caenorhabditis elegans (C. elegans) were characterized by using filtration binding assays. Scatchard analysis using $[^{3}H]N-methylscopolamine$ ($[^{3}H]NMS$) showed that the dissociation constant ($K_d$) and the maximum binding value ($B_{max}$) were $3.3{\pm}0.8{\times}10^{10}$ M and $9.0{\pm}1.1$ fmol/mg protein, respectively. Binding competition experiments indicated that the affinities of C. elegans mAChRs to atropine, scopolamine, and oxotremorine were similar to those of mammalian mAChRs. Pirenzepine binding experiments revealed that the binding pattern of mAChRs in C. elegans closely resembled that of mAChRs in rat brain, suggesting that the receptors consist primarily of Ml subtype. The affinity of mAChRs for oxotrernorine was significantly affected by guanylylimidodiphosphate (Gpp(NH)p), a non hydrolyzable GTP analog, suggesting that mAChRs in C. elegans might be coupled to G proteins. The data presented here indicate the possibility that C. elegans provides a living animal model to study the action mode of the muscarinic cholinergic system.

  • PDF

Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine (생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구)

  • Kim, Byung Joo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.662-670
    • /
    • 2021
  • Interstitial cells of Cajal (ICCs) are the pacemaking cells in the gastrointestinal (GI) muscles that generate the rhythmic oscillation in membrane potentials known as slow waves. In the present study, we investigated the effects of mirtazapine, a noradrenergic and serotonergic antidepressant, on pacemaking potential in cultured ICCs from the murine small intestine. The whole-cell patch-clamp configuration was used to record pacemaker potential in cultured ICCs. Mirtazapine induced pacemaker potential depolarizations in a concentration-dependent manner in the current clamp mode. Y25130 (a 5-HT3 receptor antagonist), RS39604 (a 5-HT4 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effects on mirtazapine-induced pacemaker potential depolarizations. Also, methoctramine, a muscarinic M2 receptor antagonist, had no effect on mirtazapine-induced pacemaker potential depolarizations, whereas 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a muscarinic M3 receptor antagonist, inhibited the depolarizations. When guanosine 5'-[β-thio] diphosphate (GDP-β-S; 1 mM) was in the pipette solution, mirtazapine-induced pacemaker potential depolarization was blocked. When an external Ca2+ free solution or thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, was applied, the generation of pacemaker potentials disappeared, and under these conditions, mirtazapine induced pacemaker potential depolarizations. In addition, protein kinase C (PKC) inhibitor, calphostin C, and chelerythrine inhibited mirtazapine-induced pacemaker potential depolarizations. These results suggest that mirtazapine regulates pacemaker potentials through muscarinic M3 receptor activation via a G protein-dependent and an external or internal Ca2+-independent PKC pathway in the ICCs. Therefore, mirtazapine can control GI motility through ICCs.

Interaction of Forskolin with the Effect of Oxotremorine on $[^3H]-Acetylcholine$ Release in Rabbit Hippocampus (가토 해마에서 Acetylcholine 유리에 미치는 Oxotremorine 및 Forskolin의 영향)

  • Choi, Bong-Kyu;Kim, Chong-Suhn;Yoon, Young-Bok;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.89-97
    • /
    • 1991
  • As it has been reported that the depolarization-induced release of acetylcholine(ACh) is diminished by activation of presynaptic muscarinic autoreceptor in rabbit hippocampus and various lines of evidence indicate the involvement of adenylate cyclase system in ACh release, it was attempted to delineate the role of cAMP in the muscarinic autoreceptor-mediated control of ACh release. Slices and synaptosomal preparations from rabbit hippocampus were incubated with $[^3H]-choline$ and the release of the labelled products was evoked either by electrical stimulation or by $high-K^+$, and the influence of various agents on the evoked tritium release was investigated. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from $0.1\;to\;30\;{\mu}M$, increased the $[^3H]-ACh$ release in a dose-dependent manner and also dbcAMP increased the tritium outflow. The responses to oxotremorine, a specific muscarinic agonist, were characterized by decrement of ACh release in dose range of $0.1-30\;{\mu}M$, and the oxotremorine effects were inhibited either by forskolin or by atropine. Glibenclamide, a specific $K^+-channel$ inhibitor, in concentration of $1{\sim}10\;{\mu}M$, decreased the evoked ACh release slightly and inhibited the enhancing effect of evoked ACh-release of a large dose$(10\;{\mu}M)$ of forskolin. These results indicate that the cAMP might play a role in the muscarinic ACh receptor-mediated control of ACh rlease in the rabbit hippocampus and suggest that certain potassium currents may also be participated in the post-receptor mechanism of ACh release.

  • PDF

Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4

  • Kim, Jinsung;Moon, Sang Hui;Kim, Taewook;Ko, Juyeon;Jeon, Young Keul;Shin, Young-Cheul;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2020
  • Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.