• Title/Summary/Keyword: Murine tissue

Search Result 135, Processing Time 0.046 seconds

Anti-Mullerian Hormone Serum Concentrations in Prenatal and Postnatal Period in Murine

  • Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.149-155
    • /
    • 2013
  • Mullerian inhibiting substance (MIS) is a member of the TGF-${\beta}$ (transforming growth factor-${\beta}$) family whose members play key roles in development, suppression of tumour growth, and feedback control of the pituitary-gonadal hormone axis. MIS is expressed in a highly tissue-specific manner in which it is restricted to male Sertoli cells and female granulose cells. The serum levels of MIS in prenatal and postnatal ICR mice were measured using the enzyme-linked immuno-solvent assay (ELISA) using the MIS/AMH antibody. Mice were grouped by age: the significant periods were at the onset of development. During sex organ differentiation, no remarkable difference between female and male foetus MIS serum levels (both<0.1 ng/ml) was observed. However, MIS serum levels in pregnant mice markedly changed (4.5~12.2 ng/ml). After birth, postnatal female and male mice serum MIS levels changed considerably (male: <0.1~138.5 ng/ml, female: 5.3~103.4 ng/ml), and the changing phase were diametrically opposed (male: decreasing, female: fluctuating). These findings suggest that MIS may have strong associations with not only develop-ment but also puberty. For further studies, establishing the standard MIS serum levels is of importance. Our study provides the basic information for the study of MIS interactions with reproductive organ disability, cancer, and the effect of other hormone or menopause. We hypothesise that if MIS is regularly injected into middle-age women, meno-pause will be delayed. We detected that serum MIS concentration curves change with age. The changing phase is different between males and females, and this difference is significant after birth. Moreover, MIS mRNA is expressed during the developmental period (prenatal) and also in the postnatal period. This finding indicates that MIS may play a significant role in the developmental stage and in growth after birth.

Wound Healing Activity of Gamma-Aminobutyric Acid (GABA) in Rats

  • Han, Dong-Oh;Kim, Hee-Young;Lee, Hye-Jung;Shim, In-Sop;Hahm, Dae-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1661-1669
    • /
    • 2007
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-$1{\beta}$, and TNF-${\alpha}$ in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of re-epithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating re-epithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.

The Experimental Study on Anti-oxidant and Anti-inflammatory Effect of Jogantanggagambang(JGTG) (조간탕가감방(調肝湯加減方)의 항산화활성(抗酸化活性) 및 항염증작용(抗炎症作用)에 대한 실험적(實驗的) 연구(硏究))

  • Byun, Hyung-Kuk;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.76-96
    • /
    • 2008
  • Purpose: This study was performed to evaluate anti-inflammatory effects of Jogantanggagambang(JGTG). Methods: In the study of anti-oxidant activities, JGTG was investigated by DPPH radical scavenger activity, superoxide dismutase activity and superoxide anion radical scavenger activity. In the study of anti-inflammatory effects, JGTG was investigated using cultured cells and murine models. As for the parameters of inflammation, levels of several inflammatory cytokines and chemical mediators which are known to be related to inflammation were measured in mouse lung fibroblast cells(mLFCs) and RAW264.7 cells. Results: 1. JGTG showed a safety in cytotoxicity and toxicity of liver. 2. JGTG effected scavenging activity on DPPH free radical, superoxide dismutase and superoxide anion radical. 3. JGTG in RAW 264.7 cell decreased IL-$1{\beta}$ mRNA expression, IL-6 mRNA expression, TNF-${\alpha}$ mRNA expression at 50, $100{\mu}g/m{\ell}$ and also decreased NOS-II mRNA expression at $100{\mu}g/m{\ell}$, and decreased COX-2 mRNA expression at 10, 50, $100{\mu}g/m{\ell}$. 4. JGTG in RAW 264.7 cell decreased significantly IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ at 50, $100{\mu}g/m{\ell}$. 5. JGTG inhibited significantly IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ production in serum of acute inflammation-induced mice. 6. JGTG decreased significantly IL-$1{\beta}$ mRNA production in spleen tissue. Conclusion: These results suggest that JGTG can be used for treating diverse female diseases caused by inflammation

  • PDF

The anti-microbial peptide SR-0379 stimulates human endothelial progenitor cell-mediated repair of peripheral artery diseases

  • Lee, Tae Wook;Heo, Soon Chul;Kwon, Yang Woo;Park, Gyu Tae;Yoon, Jung Won;Kim, Seung-Chul;Jang, Il Ho;Kim, Jae Ho
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.504-509
    • /
    • 2017
  • Ischemia is a serious disease, characterized by an inadequate blood supply to an organ or part of the body. In the present study, we evaluated the effects of the anti-microbial peptide SR-0379 on the stem cell-mediated therapy of ischemic diseases. The migratory and tube-forming abilities of human endothelial progenitor cells (EPCs) were enhanced by treatment with SR-0379 in vitro. Intramuscular administration of SR-0379 into a murine ischemic hindlimb significantly enhanced blood perfusion, decreased tissue necrosis, and increased the number of blood vessels in the ischemic muscle. Moreover, co-administration of SR-0379 with EPCs stimulated blood perfusion in an ischemic hindlimb more than intramuscular injection with either SR-0379 or EPCs alone. This enhanced blood perfusion was accompanied by a significant increase in the number of CD31- and ${\alpha}$-SMA-positive blood vessels in ischemic hindlimb. These results suggest that SR-0379 is a potential drug candidate for potentiating EPC-mediated therapy of ischemic diseases.

Antioxidant and Anti-inflammatory Effects of Atoberry in Atopic Dermatitis-like NC/Nga Mouse Model (아토피 피부염 유사 NC/Nga 마우스 모델에서 아토베리의 항산화 및 항염증효과)

  • Mok, Ji-Ye;Park, Kwang-Hyun;Ryu, Cheol;Cho, Jung-Keun;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.302-309
    • /
    • 2010
  • Oxidative stress has been implicated in cutaneous damage in various inflammatory skin diseases, including atopic dermatitis (AD). Atoberry is the herb medicine extract which is composed with Spirodelae Herba, Xanthii Fructus, Houttuyniae Herba, Taraxaci Herba, Retinervus Luffae Fructus, Platycodi Radix, and Scutellariae Radix. In this study, we investigated the antioxidant and anti-inflammatory effects of Atoberry in AD-like skin lesion NC/Nga mice. Murine AD-like skin lesions were made by painting Dermatophagoides farinse (Df) extract. Atoberry significantly increased electron donating ability (DPPH), nitrite scavenging (NO) and superoxide dismutase (SOD) activities in dose dependant. Topically applied Atoberry significantly reduced clinical severity score, ear thickness and histological grade in AD-like skin lesion NC/Nga mice. In addition, the serum levels of IgE, NO and prostaglandin E2 were significantly reduced by Atoberry. Futhermore, skin tissue levels of SOD, catalase and glutathione peroxidase (GPx) were significantly reduced by Atoberry. These results demonstrate that topical application of Atoberry may be improve the AD-like skin lesion by antioxidant and anti-inflammatory effects.

Anti-inflammatory Effects of Effective Microorganism Fermentation Substance on Atopic Dermatitis-like NC/Nga Mouse Model (아토피 피부염 유사 NC/Nga 마우스 모델에서 유용 미생물 발효물질의 항염증효과)

  • Mok, Ji-Ye;Jeong, Seung-Il;Cho, Jung-Keun;Choi, Ji-Won;Nam, Sang-Yun;Chang, Won-Ghil;Moon, Byung-Eun;Park, Kwang-Hyun;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.258-265
    • /
    • 2010
  • Atopic dermatitis (AD) is a chronically relapsing pruritic inflammatory skin disease. To find new anti-inflammatory products for skin inflammatory disease such as AD and contact dermatitis, we produced the effective microorganism fermentation substance (EM-S) by fermentation of medicinal plants with effective microorganisms including photosynthetic bacteria, lactic acid bacteria and yeast, screened the effects of EM-S on NC/Nga model mice. Murine AD-like skin lesions were made by painting Dermatophagoides farinae (Df) extract. Topically applied EM-S significantly reduced clinical severity score, ear thickness and histological grade in AD-like NC/Nga mouse model by Df antigen sensitization. In addition, the serum IgE and Th2 chemokine levels (TARC/CCL17, MDC/CCL22 and CTACK/CCL27) were significantly reduced by EM-S. Futhermore, skin tissue expressions of Th2 chemokines were significantly reduced by EM-S. These results demonstrate that topical application of EM-S may be improve the AD-like skin lesion by suppressing IgE and Th2 chemokines.

Production of a anti-MUC1 monoclonal antibody using a glutathione- S-transferase-MUC1 bacterial fusion protein.

  • Park, Kyu-Hwan;Shin, Chan-Young;You, Byung-Kwon;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.198-198
    • /
    • 1998
  • Muc1 mucin is found in a variety of epithelial tissue and is overexpressed in several epithelial cancer. Recently it is alsol reported that primary Hamster tracheal surface epithelial(HTSE) cells express Muc1 protein and cDNA encoding HTSE muc1 protein has been cloned. Although numerous monoclonal antibodies (mAbs) to human muncins, particularly Muc1 have been produced, no such antibodies to murine Muc1 have been described. We now describe monoclonal antibody, called mAb M1CT, produced to C-terminal region of HTSE Muc1 protein by immunising mice with a glutathion-s-transferase linked fusion protein. In this study, using this antibody(mAb M1CT) we investigated the effect of RA on the expression of Muc1 in HTSE cells. Retinoic acid(RA) plays an essential role in maintaining normal differentiation of tracheal epithelial cells. With RA-deficiency tracheocytes undergo squamous metaplasia, an abnormal differentiation that can be reversed by RA. We had primary culture of HTSE cells under different concentrations of RA. Culture was maintained until the direction of differentiation was determined. Then Western blot analysis with mAb M1CT was performed with the cell lysates from the culture. The expression of Muc1 protein was decreased in dose-dependent manner as the concentration of retinoic acid was decreased. Our result indicates that the expression of Muc1 protein is coordinately regulated with airway mucous cell differentiation by RA pathway. And the antibody, mAb M1CT, produced in this study should provide useful tool to study the expression of Muc1 mucin in differentiation process or disease.

  • PDF

Transforming Growth Factor β Receptor Type I Inhibitor, Galunisertib, Has No Beneficial Effects on Aneurysmal Pathological Changes in Marfan Mice

  • Park, Jeong-Ho;Kim, Min-Seob;Ham, Seokran;Park, Eon Sub;Kim, Koung Li;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.98-103
    • /
    • 2020
  • Marfan syndrome (MFS), a connective tissue disorder caused by mutations in the fibrillin-1 (Fbn1) gene, has vascular manifestations including aortic aneurysm, dissection, and rupture. Its vascular pathogenesis is assumed to be attributed to increased transforming growth factor β (TGFβ) signaling and blockade of excessive TGFβ signaling has been thought to prevent dissection and aneurysm formation. Here, we investigated whether galunisertib, a potent small-molecule inhibitor of TGFβ receptor I (TβRI), attenuates aneurysmal disease in a murine model of MFS (Fbn1C1039G/+) and compared the impact of galuninsertib on the MFS-related vascular pathogenesis with that of losartan, a prophylactic agent routinely used for patients with MFS. Fbn1C1039G/+ mice were administered galunisertib or losartan for 8 weeks, and their ascending aortas were assessed for histopathological changes and phosphorylation of Smad2 and extracellular signal-regulated kinase 1/2 (Erk1/2). Mice treated with galunisertib or losartan barely exhibited phosphorylated Smad2, suggesting that both drugs effectively blocked overactivated canonical TGFβ signaling in Fbn1C1039G/+ mice. However, galunisertib treatment did not attenuate disrupted medial wall architecture and only partially decreased Erk1/2 phosphorylation, whereas losartan significantly inhibited MFS-associated aortopathy and markedly decreased Erk1/2 phosphorylation in Fbn1C1039G/+ mice. These data unexpectedly revealed that galunisertib, a TβRI inhibitor, showed no benefits in aneurysmal disease in MFS mice although it completely blocked Smad2 phosphorylation. The significant losartan-induced inhibition of both aortic vascular pathogenesis and Smad2 phosphorylation implied that canonical TGFβ signaling might not prominently drive aneurysmal diseases in MFS mice.

Effects of Anti-Helicobacter pylori IgY Powder to Protect Mice from Helicobacter pylori (Helicobacter pylori 감염생쥐에서 항-Helicobacter pylori 난황항체 분말의 효과)

  • Jung, Soon-Hee;Kim, Hyun-Jue;Lyoo, Young-Soo;Rho, Jeong-Hae;Lee, Nam-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.93-98
    • /
    • 2006
  • Effects of anti-Helicobacter pylori IgY powder on H. pylori infection were evaluated 3 and 7 weeks after powder feeding by urease, PCR, and histological tests, and specific IgG assay of murine gastric tissue using mouse model. To produce anti-H. pylori IgY powder, laying hens were immunized with H. pylori prior to egg yolk harvest. C57BL/6 mice showing high response to H. pylori were infected with H. pylori and fed with the anti-H. pylori IgY powder. In urease and PCR tests, urease activity and gene count of anti-H. pylori IgY powder-fed group significantly decreased in comparison with control. Histological results indicated anti-H. pylori IgY powder effectively protected mice from H. pylori.

Endotoxin Induces Late Increase in the Production of Pulmonary Proinflammatory Cytokines in Murine Lupus-Like Pristane-Primed Modelp

  • Chae Byeong-Suk;Park Jeong-Suk;Shin Tae-Yong
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.302-309
    • /
    • 2006
  • Lupus-like syndrome is characterized by multiple organ injuries including lungs and kidneys. Endotoxin induces a transiently intent systemic inflammatory response and indirectly transient acute lung injury in normal condition. However, whether endotoxin may trigger the persistent development of lung injury in chronic, inflammatory lupus-like syndrome compared with normal condition remains unclear. We examined the pulmonary vascular permeability and production of proinflammatory cytokines, such as TNF-${\alpha}$, IL-6, IL-10 and IFN-${\gamma}$, which play prominent roles in the pathogenesis of lupus-like tissue injury, 6 hand 72 h after i.p. lipopolysaccharide (LPS; endotoxin) injection in pristane-primed chronic inflammation ICR mice characterized by a lupus-like syndrome. These results demonstrated that levels of serum IL-6, IL-10 and IFN-${\gamma}$ and bronchoalveolar lavage (BAL) IL-6 and IFN-${\gamma}$ were remarkably increased 6 h in LPS-exposed pristane-primed mice compared with pristane-primed controls, while pulmonary vascular permeability and levels of serum and BAL TNF-${\alpha}$ were not. And levels of BAL TNF-${\alpha}$, IL-6 and IL-10 were significantly enhanced 72 h in LPS-exposed pristane-primed mice compared with pristane-primed controls. Also, LPS significantly induced the increased in vitro production of TNF-${\alpha}$, IL-6 and IL-10 by lung cells obtained from LPS-exposed pristane-primed mice compared with LPS-exposed normal mice. Our findings indicate that LPS may trigger persistent progression of lung injury through late overproduction of BAL TNF-${\alpha}$, IL-6, and IL-10 in lupuslike chronic inflammation syndrome compared with normal condition.