• Title/Summary/Keyword: MurA

Search Result 31, Processing Time 0.022 seconds

A Docking Study of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae in Complex with Inhibitors

  • Yoon, Hye-Jin;Mikami, Bunzo;Park, Hyun-Ju;Yoo, Ja-Kyung;Suh, Se-Won
    • Korean Journal of Crystallography
    • /
    • v.18 no.1_2
    • /
    • pp.10-15
    • /
    • 2007
  • UDP-N-acetylglucosamine enolpyruvyl transferase (MurA; EC 2.5.1.7) catalyzes the first committed step of peptidoglycan biosynthesis in bacteria, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. Because the crystallization condition contained a high concentration of ammonium sulfate, our inhibitor binding studies were not successful. Therefore, we employed a docking approach to investigate the inhibitor binding. Our results will be useful in structure-based design of specific inhibitors of MurA for antibacterial discovery.

Design for Rectangular Waveguide Slot Antenna using FDTD Method (FDTD법을 이용한 구형도파관의 Slot 안테나 설계)

  • 고지원;김광욱;김동철;임학규;민경식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.147-151
    • /
    • 2000
  • This paper presents an analysis of a slot on the broad wall of a rectangular waveguide using the 3D FDTD method. In order to reduce the reflection loss, Mur's 2nd absorbing boundary condition is used. To realize the optimum design by FDTD, the effects of time step, excitation aperture size, analysis region and excitation position in model are derived. The analysis results are compared with the experimental results and they show a good agreement with each other.

  • PDF

A Study on the Electromagnetic wave properties of microstrip antenna using finite difference time domain method (FDTD법을 이용한 마이크로스트립 안테나의 전자파 특성에 관한 연구)

  • 홍용인;정명덕;홍성일;이흥기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.653-660
    • /
    • 1998
  • The purpose of this paper is to analyze the electromagnetic field characteristics of microstrip array antenna with the FDTD(finite difference-time domain method). Finite difference equations of Maxwell's equations are defined in rectangular coordinate systems. To simulate the unbounded problem like a free space, the Mur's absorbing boundary condition is also used. After modeling the microstrip array antenna with the grid structure, the transient response of the field distribution is depicted in the time domain.

  • PDF

Radio wave propagation simulations of indoor by finite difference time domain method (실내 전파 차분의 시간영역 유한차분법에 의한 계산)

  • 허문만;백낙준;박항구;윤현보
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents a 3-D finite difference time domain (FDTD) method used for indoor propagation simulations where the electromagnetic wav eis uniformly excited on th eone of the wall in a building and affected by an indoor obstacles. In cases of simulation and measurement, the frequency of 851 MHz is used. The conductivities of walls, floor, ceiling and indoor obstacles are measured and used for simulations. These simulations are carried out using different boundary condition such as mur's absorbing boundary condition (ABC) and perfectly matched layer (PML) technique. The PML technique is found to be well-suited to this analysis because of it's smaller computational domain than mur's ABC. The measured signal strengths are compared to simulated values with good agreement.

  • PDF

A study on the electromagnetic wave properties of the leaky coaxial cable with the finite difference time domain (FDTD) algorithm (유한차분 시간영역 알고리듬을 이용한 누설 동축 케이블의 전자파 특성에 관한 연구)

  • 홍용인;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2954-2965
    • /
    • 1996
  • In this paper, the electromagnetic field characteristics of leaky caxial cable are anlyzed by using the finite difference-time domain(FDTD) technique. Finite difference equations of Maxwell's equations are definedin cylindrical coordinate systems. To simulate the open boundary problem like a free space, the Mur's Absorbing Boundary condition(Mur-ABC) is also used. After modeling the leaky coaxial cable with the three dimensional grid structure, the transient response of the field distribution and the current distribution, the field pattern, the coupling effect are depicted in the time domain.

  • PDF

Analysis of microstrip patch array antenna characteristics using finite difference time domain algorithm (유한차분시간영역 알고리듬을 이용한 마이크로스트립 패치 배열 안테나 특성해석)

  • 홍용인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.197-205
    • /
    • 1998
  • The purpose of this paper is to analyze the electromagnetic field characteristics of array antenna with the finite difference-time domain algorithm. Finite difference equations of Maxwell's equations are defined in cylindrical coordinate systems. To simulate the unbounded problem like a free space, the Mur's absorbing boundary condition is also used. After modeling the array antenna with the grid structure, the transient response of the field distribution is depicted in the time domain.

  • PDF

An Anisotropic Perfectly Matched Layer(APML) for Mesh Truncation in The Finite Difference Time Domain Method (유한차분시간영역(FDTD)법에 있어 Mesh Truncation을 위한 비등방성 완전정합층에 관한 연구)

  • 박동희;김정기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.678-686
    • /
    • 1998
  • This paper describes an anisotropic perfectly matched layer (APML) for mesh truncation of the Finite Difference Time Domain(FDTD) method. The APML method can classified by a split type and an unsplit type, in case of the split type be made up 12 equations or 8 equations largely, and in case of the unsplit type be made of 6 equations. Therefore the latter is more simple as compare with the former. For the APML method presented in this paper is the latter, is directly derived from the time domain equations of Maxwell and extend to the three dimensional problem for the method suggested by Chen. Especially, in the edge and corner parts except the planes, the APML method effectively treated as compound with the Chen's method and Gedney's method newly. The results of the numerical method in this paper show the radiation patterns and the time responses of electromagnetic fields of the wire antennas according to wavelengths and the APML results are compared with Mur's first order absorbing boundary condition and Kraus's analytical results. Eventually, Mur's first order condition have many errors at the edge and corner. On the other hand, in comparison with Kraus's analytical results, it is quite good agreement, and the validity of present method is confirmed.

  • PDF

A Study on the Microstrip Patch Antenna Using FDTD Method (유한 차분 시간법을 이용한 마이크로스트립 패치 안테나에 관한 연구)

  • 장용웅;박상규;신철재
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a microstrip patch antenna was analyzed by using FDTD method. Firstly, the electric field in the microstrip patch antenna was obtained by approximating a Maxwell's equation to a finite difference equation by means of Yee's algorithm. In this case, Mur's 1st approximation and dispersive boundary condition(BBC) were applied to an absorbing boundary condition. We also analyzed a single microstrip patch antenna by using the FDTD method, then calculating the propagative process in the wave of a return loss. Also, as the result that FDTD was applied to 2-array antenna designed to increase the gain of antenna, the measured results was in relatively good accordance with the values calculated by the FDTD method. The calculated impedance, return loss and VSWR were comparatively good. And these results were In relatively good accordance with the measured values.

  • PDF

Crystallization and Preliminary X-Ray Crystallographic Analysis of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae in Complex with UDP-N-Acetylglucosamine and Fosfomycin

  • Yoon, Hye-Jin;Ku, Min-Je;Ahn, Hyung Jun;Lee, Byung Il;Mikami, Bunzo;Suh, Se Won
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.398-401
    • /
    • 2005
  • The bacterial enzyme UDP-N-acetylglucosamine enolpyruvyl transferase catalyzes the first committed step of peptidoglycan biosynthesis, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. We have overexpressed the enzyme from Haemophilus influenzae in Escherichia coli and crystallized it in the apo-form, as well as in a complex with UDP-N-acetylglucosamine and fosfomycin using ammonium sulfate as the precipitant. X-ray diffraction data from a crystal of the apo-form were collected to $2.8{\AA}$ resolution at 293 K. The crystal quality was improved by co-crystallization with UDP-N-acetylglucosamine and fosfomycin. X-ray data to $2.2{\AA}$ have been collected at 100 K from a flash-frozen crystal of the complex. The complex crystals belong to the orthorhombic space group I222 (or $I2_12_12_1$) with unit-cell parameters of a = 63.7, b = 124.5, and $c=126.3{\AA}$. Assuming a monomer of the recombinant enzyme in the crystallographic asymmetric unit, the calculated Matthews parameter ($V_M$) is $2.71{\AA}^3Da^{-1}$ and solvent content is 54.6%.