• Title/Summary/Keyword: Municipal wastes

Search Result 146, Processing Time 0.04 seconds

Influence of Temperature on Separation of CO and H2 Mixed Gas Using Polyamide Composite Membrane (폴리아마이드 복합막을 이용한 일산화탄소 및 수소 혼합가스의 분리특성에 대한 온도의 영향)

  • Choi, Kyung Seok;Poudel, Jeeban;Oh, Sea Cheon
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.360-365
    • /
    • 2012
  • With rapid increase in municipal solid waste (MSW) due to the rising economy, solid waste gasification emerges as one of the promising technologies. Separation of the carbon monoxide (CO) and hydrogen ($H_2$) from syngas obtained by gasification of MSW was studied using the polyamide composite membrane. The separation characteristics of the CO and $H_2$ were studied at different gas flow rates and stage cuts. The permeability of CO and $H_2$ along with the selectivity of $H_2$ with respect to CO was obtained. Furthermore, the Arrhenius plots were obtained to estimate the activation energies of CO and $H_2$ permeabilites.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Characteristics of Particle Size Distribution in the Organic Fraction of Municipal Solid Waste by the Reaction of Super-heated Steam (과열증기 반응에 의한 생활폐기물 유기성분 입도특성)

  • Jang, Ha-Na;Min, Tai-Jin;Roh, Seon-Ah;Kim, Woo-Hyun;Sung, Hyun-Je;Park, Seong-Bum
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.64-68
    • /
    • 2010
  • Recently, MBT(Mechanical Biological Treatment) facilities were built up and operated to separate and recycle MSW(Municipal Solid Wastes)in South Korea. However, the size distribution of MSW is very rough, and it is causing operation problem because MSW would be crushed in undersize diameter by mechanical equipment before feeding each seperation process. Also, the organic material should be pre-seperated to reuse recycle material in MSW. In this research, the reactor of 1ton/batch using the super-heated steam was tested to present the separation efficiency and the size distribution of MSW by experimental factors.

Optimum Mixing Ratio of Sewage Sludge during Composting of Food Wastes (음식물쓰레기의 퇴비화시 하수슬러지의 최적 혼합비율)

  • Lee Young Sei;Choi Hyun Kuk;Kim Jung Keun;Lee Yong Hee;Chung Kyung Tae;Roh Jong Su;Suh Myung Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.366-373
    • /
    • 2004
  • Food waste is becoming by environmental problem nowdays increasing festinately in Korea during past 10 years. Food waste collected from garbage trucks that is offered in S municipal government that food waste mixs enough, and sewage sludge collected in the country. Composting experiment conditions achieved in the mixture ratio rate that food waste and sewage sludge are each 10:90, 30:70, 50:50, 60:40, 70:30 and 90:10 $wt\%$. The fermentation temperature was $18{\sim}22^{\circ}C$ at the beginning, and then it was sharply increased to $44{\sim}66^{\circ}C$ up to 1 day after fermentation, which was maintained for more than 3 days. Then, it was slowly decreased to $18{\sim}25^{\circ}C$ up to 8 days after fermentation, which was maintained all the time. It could be known from examiation of various conditions, including reaction rate, salinity. carbon/nitrogen(C/N) ratio, temperature, organic substance, etc.. Optimum mixture ratio rate of composting using food waste and sewage sludge was 60:40 $wt\%$.

Effects of Successive Organic Wastes Treatment on Fungal Flora in Agricultural Upland Lysimeter (유기성폐기물 연용이 토양 내 진균 분포에 미치는 영향)

  • Lee, Kang-Hyo;Weon, Hang-Yeon;Seok, Soon-Ja;Jang, Kab-Yeul;Kwon, Soon-Ik;Kim, Seung-Hwan;Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.116-122
    • /
    • 2008
  • Fungal floras were investigated for the lysimeter soil treated with municipal sewage sludge (MSS), pig manure compost (PMC), industrial sewage sludge (ISS), leather processing sludge (LS), and alcohol fermentation processing sludge (FS). Fungal populations were higher in the FS, ISS, LS, or MSS-treated soil than in the chemical fertilizer-treated soil. Isolated fungi from the sewage sludge were identified as Penicillium spp., Gliocladium spp., Acremonium spp., Trichoderma spp., Aspergillus spp., Blastomyces spp., and Phoma spp.

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

Cost-Benefit Analysis by Resource Recovery Facility for Municipal Waste -Focus on Gangwon Province- (생활폐기물 자원화시설의 편익분석 -강원도 중심으로-)

  • Han, Young-Han;Lee, Hae-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2833-2845
    • /
    • 2012
  • In this study, the amount of waste resource that could be recovered was analyzed. The installation and operation costs of waste resource recovery for both single- and multi-regional facility were calculated, and compared with the costs of landfill to investigate the feasibility of them. RDF(Refuse Derived Fuel) process and resource recovery by incineration process were considered as waste resource recovery facility. And, the multi-regions for cost analysis were established on the basis of the proper generation rate of municipal waste with the consideration of combustible ratio. The study results showed that single region facility for both RDF and incineration process has no economic benefit, compared with the landfill method. For the multi-regional facility, RDF process could save a large cost than the landfill method, but the incineration facility couldn't. Separate from the economic benefits, the waste resource recovery should be importantly considered when considering the depletion of fossil fuel, global warming, environmental toxicity, and the enormous expenses due to social conflict and confuse. When the CDM(Clean Development Mechanism) is vitalized in the near future, the additional economic benefits by CERs(Certified Emission Reductions) could be expected. CERs for RDF facility is corresponding to about 256.5 billion won, and CERs for incineration facility is corresponding to about 54 and 77.4 billion won for single- and multi-regional facility, respectively.

Estimation Method of Potential Biomass Resources in Korea (국내 바이오매스 자원 잠재량 산정방법)

  • Lee, Joon-Pyo;Hwang, Kyung-Ran;Park, Soon-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.332-336
    • /
    • 2008
  • The resource potentials biomass resources of South Korea are estimated as Preliminary stage using relevant National statistics. Biomass resources possibly be collected, used and converted to bioenergy in Korea are forest biomass, agricultural residue, livestock manure and municipal solid wastes. The potential biomass resources are classifying into total potential, available potential and technically feasible biomass resources, Total potential biomass resources in Korea are estimated to be around 140million tons of oil equivalent (toe). Available potentials are estimated to be around 11million annually. The technically feasible biomass resources with current technologies are estimated to be 2.3million toe annually. These estimated values are the minimum of all potentials since they are all estimated from explicit statistics. Although actually there exist huge amount of biomass on the land as well as in the sea, potential resources for bioenergy are believed to be limited. The potentials are to be inclosed with the improvement of bioenergy technologies.

  • PDF

Techniques of Water Quality Improvement by Using Ozone Generation System (오존발생시스템을 이용한 하천수질 개선기법)

  • Kim, Min-Young;Ryu, Jae-Wook;Lee, Seung-Yun;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2122-2126
    • /
    • 2008
  • With the degradation of water quality and, at the same time increased water usage, the sources of high quality, for examples, river/stream, municipal reservoir, wells, artisan and surface water, are diminishing. Therefore, the importance of water quality has been emphasized over the years through publications and various literature sources. Even though considerable research has resulted in significant strides for providing interpretive information and mitigation strategies for improvement of waters, the quality of which is still questionable. This study aims to propose a completely independent self-contained system for purifying waters, solar-powered ozone generator. It is a semi-permanent and cost effective environmental solution. Functions of ozone treatment are: 1) to maintain oxidative flexibility, 2) remove harmful chemicals, wastes, and other substances, and 3) prevent epizootic microbial outbreaks. Recent advances in technology have allowed the development of the practical, self-contained and independent solar powered device. Solar electrical producing panels that charge batteries are the key to using these systems anywhere electrical power is not available. This paper invites the readers to examine the problem and consider the viable, proven solution the solar powered ozone purifying system. This paper also introduces basic concept and background of solar powered ozone generators and examine its feasibility for improving water quality in rivers and streams.

  • PDF

Government Policies and Promotion for Enhancing Bioenergy Adoption in Korea and USA

  • Kim, Dong-Shik;Joo, Hyun-Soo
    • Journal of Environmental Policy
    • /
    • v.3 no.1
    • /
    • pp.55-69
    • /
    • 2004
  • Bioenergy can be obtained from various forms of biomass such as agricultural, food processing, and municipal wastes. Recently, its importance is recognized more seriously because of its positive impacts on economic and stable energy supply and environmental sustainability. Despite its advantages, bioenergy has not been used as much as it was expected, nor has it been developed to the level of attractive commercialization in energy market. The main reasons for the sluggish progress have been analyzed by comparing the bioenergy policies in Korea and U.S.A. Both Korea and U.S. governments have recognized the importance of bioenergy and put in various efforts to promote the use of bioenergy. Both governments have legislated alternative energy promotion plans that support R&D, tax reduction, rewards, and low interest loans. However, it is suggested that the bioenergy policy and plan juxtapose the financial supports (R&D, tax exemption, low interest loan, education, etc.) with strong mandates and obligations. Although imposing strong mandates prerequisites the economically attractive and feasible technologies, it can motivate and speed up more effective technology development, in turn. In addition, the bioenergy R&D support must include studies on commercialization and marketing as well as process development. R&D on the socioeconomic effects of bioenergy should also be supported. Lastly, decision making processes for the bioenergy policy, and for alternative energy overall, must include environmental agencies for taking advantage of environmental benefits of bioenergy.

  • PDF