• 제목/요약/키워드: Multivariate time series

검색결과 145건 처리시간 0.024초

Factor analysis of the trend of stream quality in Nakdong River

  • Kim, Kyong-Mu;Lee, In-Rak;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1201-1210
    • /
    • 2008
  • The goal of this paper is to investigate the trend of stream quality and the quality of water in Nakdong river by the method of factor analysis. It used the fourteen different monthly time series data such as pH, BOD, COD, SS, TN and etc. of the thirty four of Nakdong River measurement points from Jan. 1998 to Dec. 2006. The result of factor analysis is that the factor 1 results from organic water pollution is occupied 29.288% such as BOD, COD, TN and EC, and the factor 2 explained from sewage and a seasonal variation is occupied 16.467% such as SS.

  • PDF

지표생물의 독성물질 반응 행동에 대한 수리적 평가 (Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials)

  • 전태수;지창우
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권4호
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

지역 군집화를 위한 CNN-GRU 기반 다변량 시계열 데이터의 특성 추출 (Feature Extraction of CNN-GRU based Multivariate Time Series Data for Regional Clustering)

  • 김진아;이지훈;최동욱;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.950-951
    • /
    • 2019
  • 시계열 데이터에 대한 군집화 관련 연구는 주로 통계 분석을 통해 이뤄지기 때문에 데이터가 갖는 특성을 완전히 반영하는 데 한계를 갖는다. 본 논문에서는 다변량 데이터에서의 군집화를 위하여 변수별로 시간에 따른 변화와 특징을 추출하기 위한 CNN-GRU(Convolutional Neural Network - Gated Recurrent Unit) 기반의 신경망 모델을 제안한다. CNN을 활용하여 변수별로 갖는 특성을 파악하고자 하였으며, GRU을 통해 전체 시간에 따른 소비 추세를 도출하고자 하였다. 지역별로 업종에 따라 사용된 2년 치의 실제 카드 데이터를 활용하였으며, 유사한 소비 추세를 보이는 지역을 군집화하는데 이를 적용하였다. 결과적으로, 다변량 시계열 데이터를 통해 전체적인 흐름을 반영하여 패턴화했다는 점에서 의의를 갖는다.

A Kullback-Leibler divergence based comparison of approximate Bayesian estimations of ARMA models

  • Amin, Ayman A
    • Communications for Statistical Applications and Methods
    • /
    • 제29권4호
    • /
    • pp.471-486
    • /
    • 2022
  • Autoregressive moving average (ARMA) models involve nonlinearity in the model coefficients because of unobserved lagged errors, which complicates the likelihood function and makes the posterior density analytically intractable. In order to overcome this problem of posterior analysis, some approximation methods have been proposed in literature. In this paper we first review the main analytic approximations proposed to approximate the posterior density of ARMA models to be analytically tractable, which include Newbold, Zellner-Reynolds, and Broemeling-Shaarawy approximations. We then use the Kullback-Leibler divergence to study the relation between these three analytic approximations and to measure the distance between their derived approximate posteriors for ARMA models. In addition, we evaluate the impact of the approximate posteriors distance in Bayesian estimates of mean and precision of the model coefficients by generating a large number of Monte Carlo simulations from the approximate posteriors. Simulation study results show that the approximate posteriors of Newbold and Zellner-Reynolds are very close to each other, and their estimates have higher precision compared to those of Broemeling-Shaarawy approximation. Same results are obtained from the application to real-world time series datasets.

UCI machine learning repository 사용한 TCN-Prophet 기반 당뇨병 예측 (Diabetes Prediction with the TCN-Prophet model using UCI Machine Learning Repository)

  • 탄텐보;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.325-327
    • /
    • 2023
  • Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.

청소년 신체 성장 예측 모델의 성능 향상을 위한 시각적 분석 방법 (Visual Analytics Approach for Performance Improvement of predicting youth physical growth model)

  • 연한별;피민규;서성범;하서호;오병준;장윤
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권4호
    • /
    • pp.21-29
    • /
    • 2017
  • 예측 시각적 분석 연구는 다양한 대화식 데이터 탐색 기법을 사용하여 예측 결과의 불확실성을 줄이는데 중점을 두었다. 대화식 탐색 기법의 목적은 변수간의 관계를 이해하고 알려지지 않은 변수를 예측하기 위한 적합한 모델을 선택함으로서 의사결정권자의 수준에 따른 예측결과의 품질 차이를 줄이는 것이다. 하지만 청소년 신체 성장 데이터와 같이 전체적인 추세가 알려지지 않은 시계열 데이터를 설명할 수 있는 예측 모델을 만드는 것은 어렵다. 본 논문에서는 불확실한 추세를 가지는 시계열 데이터 단편에서 물리적 성장 값을 예측하기 위한 새로운 예측 방법을 제안한다. 새로운 예측 방법은 특정 시점에서의 데이터 분포를 추정하는 방법으로 실험결과 기존 회귀 모델보다 높은 정확도를 갖는다. 또한 우리는 예측 모델링 과정에서 발생 가능한 불확실성을 최소화 할 수 있는 시각적 분석 방법을 제안한다.

단변량 및 다변량 LSTM을 이용한 농업용 저수지의 저수율 예측 (Prediction of Water Storage Rate for Agricultural Reservoirs Using Univariate and Multivariate LSTM Models)

  • 조성억;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1125-1134
    • /
    • 2023
  • 우리나라의 17,000여개의 저수지 중 13,600개소의 소규모 농업용 저수지에는 수문 계측 시설이 설치되지 않아서, 저수율 예측과 합리적인 저수지 운영이 쉽지 않다. 본 연구는 인공지능 기술을 이용하여 농업용 저수지의 저수율을 예측하는 것을 목적으로 하며, 단변량 long short-term memory (LSTM)에서 저수율 그 자체를 사용하는 것뿐만 아니라, 다변량 LSTM에서 강수 등의 기상변수와 시기 등의 계절변수를 추가하여 예측에 활용하였다. 이동저수지의 2013년부터 2020년까지 8년간 데이터로 모델을 학습시키고, 모델의 예측 결과를 2021년의 일일 저수율 데이터로 검증하였다. 단변량 LSTM은 1일 후 저수율을 root-mean square error (RMSE) 1.04%, 3일 후 2.52% 이내, 5일 후 4.18%의 오차로 예측하였으며, 다변량 LSTM은 1일 후 저수율을 RMSE 0.98%, 3일 후 1.95%, 5일 후 2.76%의 오차로 예측하여 더 좋은 성능을 보였다. 1일 후 저수율을 예측하는 다변량 모델의 경우, 시계열 저수율 이외에도 date of year (DOY)와 1일 및 5일 누적 강수량이 중요한 변수인 것으로 나타났는데, 이를 통해 볼 때 당일 저수율에 영향을 미치는 강수의 시간적 범위는 5일 정도인 것으로 사료된다.

The Synchronization of ASEAN +3 Business Cycles: Prerequisites for Common Currency Union

  • RIYANTO, Feri Dwi;ERLANDO, Angga;HARYANTO, Tri
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권3호
    • /
    • pp.781-791
    • /
    • 2021
  • This study aims to analyze the relationship between the business cycles of the ASEAN +3 countries. In addition, the effects of the spillover value on the coincident indicators are determined. This study employs secondary data and uses multivariate time series of five ASEAN countries, namely, Indonesia, Malaysia, Singapore, Thailand, and the Philippines. The proxy was the real gross domestic product (GDP) collected annually from the CEIC, the IMF, and the World Bank for the period from 1964 to 2016. The data was plotted against two time periods, 1964-1998 as the pre-crisis period, and 1999-2016 as the post-crisis period. The index data was changed to the base year 2010. The data was subsequently separated from the trends and the cyclic components. The cyclic components were obtained by using Hondrick-Prescott filter, and them were further analyzed. The analytical method used was Contemporaneous and Cross-Correlation tools. The results showed that, before and after the crisis, the value of the business cycle correlation between ASEAN +3 countries was stronger and moved together at the same level of lag value. The implication of this research was an initial finding of the ASEAN +3 countries' prerequisites for the formation of a common currency.

벡터자기회귀모형과 오차수정모형의 자기상관성을 위한 와일드 붓스트랩 Ljung-Box 검정 (Wild bootstrap Ljung-Box test for autocorrelation in vector autoregressive and error correction models)

  • 이명우;이태욱
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.61-73
    • /
    • 2016
  • 본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.

행동 시계열 데이터와 k-평균 군집화를 통한 젖소의 일일 행동패턴 검출 (Daily Behavior Pattern Extraction using Time-Series Behavioral Data of Dairy Cows and k-Means Clustering)

  • 이성훈;박기철;박재화
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.83-92
    • /
    • 2021
  • 지난 동안 낙농업계에서는 다양한 센서 기술과 ICT 응용이 도입되어왔으며 축적된 낙농 데이터를 토대로 과학적인 낙농생산관리가 가능해졌다. 그러나 이러한 시도들은 젖소의 출산이나 우유 생산량과 같은 낙농 생산성에 직접적으로 관여하는 요인들에 대해서만 집중적으로 이루어졌으며 이러한 결과에 근본적으로 관여하는 생리학적 혹은 동물심리학적 요인에 대해서는 연구가 더딘 실정이다. 이 논문에서는 이러한 연구의 일환으로서 젖소의 시간별 행동 데이터로부터 일일 행동패턴을 검출하는 기초적인 방안을 제시하였다. k-평균 군집화를 통해 한 젖소의 1594일간 행동을 네 개의 군집으로 구분하였으며 각 군집에 속한 데이터와 군집의 대푯값을 시각화하여 군집 형성의 합리성을 확인하였다. 또한 개체의 일별 군집 변화를 토대로 군집 개수의 적정성을 판단하였다. 이 연구 결과가 향후 젖소의 이상상태나 질병징후의 포착 연구에 기여하기를 기대한다.