Journal of the Korean Data and Information Science Society
/
제19권4호
/
pp.1201-1210
/
2008
The goal of this paper is to investigate the trend of stream quality and the quality of water in Nakdong river by the method of factor analysis. It used the fourteen different monthly time series data such as pH, BOD, COD, SS, TN and etc. of the thirty four of Nakdong River measurement points from Jan. 1998 to Dec. 2006. The result of factor analysis is that the factor 1 results from organic water pollution is occupied 29.288% such as BOD, COD, TN and EC, and the factor 2 explained from sewage and a seasonal variation is occupied 16.467% such as SS.
Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.
시계열 데이터에 대한 군집화 관련 연구는 주로 통계 분석을 통해 이뤄지기 때문에 데이터가 갖는 특성을 완전히 반영하는 데 한계를 갖는다. 본 논문에서는 다변량 데이터에서의 군집화를 위하여 변수별로 시간에 따른 변화와 특징을 추출하기 위한 CNN-GRU(Convolutional Neural Network - Gated Recurrent Unit) 기반의 신경망 모델을 제안한다. CNN을 활용하여 변수별로 갖는 특성을 파악하고자 하였으며, GRU을 통해 전체 시간에 따른 소비 추세를 도출하고자 하였다. 지역별로 업종에 따라 사용된 2년 치의 실제 카드 데이터를 활용하였으며, 유사한 소비 추세를 보이는 지역을 군집화하는데 이를 적용하였다. 결과적으로, 다변량 시계열 데이터를 통해 전체적인 흐름을 반영하여 패턴화했다는 점에서 의의를 갖는다.
Communications for Statistical Applications and Methods
/
제29권4호
/
pp.471-486
/
2022
Autoregressive moving average (ARMA) models involve nonlinearity in the model coefficients because of unobserved lagged errors, which complicates the likelihood function and makes the posterior density analytically intractable. In order to overcome this problem of posterior analysis, some approximation methods have been proposed in literature. In this paper we first review the main analytic approximations proposed to approximate the posterior density of ARMA models to be analytically tractable, which include Newbold, Zellner-Reynolds, and Broemeling-Shaarawy approximations. We then use the Kullback-Leibler divergence to study the relation between these three analytic approximations and to measure the distance between their derived approximate posteriors for ARMA models. In addition, we evaluate the impact of the approximate posteriors distance in Bayesian estimates of mean and precision of the model coefficients by generating a large number of Monte Carlo simulations from the approximate posteriors. Simulation study results show that the approximate posteriors of Newbold and Zellner-Reynolds are very close to each other, and their estimates have higher precision compared to those of Broemeling-Shaarawy approximation. Same results are obtained from the application to real-world time series datasets.
Diabetes is a common chronic disease that threatens human life and health, and its prevalence remains high because its mechanisms are complex, further its etiology remains unclear. According to the International Diabetes Federation (IDF), there are 463 million cases of diabetes in adults worldwide, and the number is growing. This study aims to explore the potential influencing factors of diabetes by learning data from the UCI diabetes dataset, which is a multivariate time series dataset. In this paper we propose the TCN-prophet model for diabetes. The experimental results show that the prediction of insulin concentration by the TCN-prophet model provides a high degree of consistency, compared to the existing LSTM model.
예측 시각적 분석 연구는 다양한 대화식 데이터 탐색 기법을 사용하여 예측 결과의 불확실성을 줄이는데 중점을 두었다. 대화식 탐색 기법의 목적은 변수간의 관계를 이해하고 알려지지 않은 변수를 예측하기 위한 적합한 모델을 선택함으로서 의사결정권자의 수준에 따른 예측결과의 품질 차이를 줄이는 것이다. 하지만 청소년 신체 성장 데이터와 같이 전체적인 추세가 알려지지 않은 시계열 데이터를 설명할 수 있는 예측 모델을 만드는 것은 어렵다. 본 논문에서는 불확실한 추세를 가지는 시계열 데이터 단편에서 물리적 성장 값을 예측하기 위한 새로운 예측 방법을 제안한다. 새로운 예측 방법은 특정 시점에서의 데이터 분포를 추정하는 방법으로 실험결과 기존 회귀 모델보다 높은 정확도를 갖는다. 또한 우리는 예측 모델링 과정에서 발생 가능한 불확실성을 최소화 할 수 있는 시각적 분석 방법을 제안한다.
우리나라의 17,000여개의 저수지 중 13,600개소의 소규모 농업용 저수지에는 수문 계측 시설이 설치되지 않아서, 저수율 예측과 합리적인 저수지 운영이 쉽지 않다. 본 연구는 인공지능 기술을 이용하여 농업용 저수지의 저수율을 예측하는 것을 목적으로 하며, 단변량 long short-term memory (LSTM)에서 저수율 그 자체를 사용하는 것뿐만 아니라, 다변량 LSTM에서 강수 등의 기상변수와 시기 등의 계절변수를 추가하여 예측에 활용하였다. 이동저수지의 2013년부터 2020년까지 8년간 데이터로 모델을 학습시키고, 모델의 예측 결과를 2021년의 일일 저수율 데이터로 검증하였다. 단변량 LSTM은 1일 후 저수율을 root-mean square error (RMSE) 1.04%, 3일 후 2.52% 이내, 5일 후 4.18%의 오차로 예측하였으며, 다변량 LSTM은 1일 후 저수율을 RMSE 0.98%, 3일 후 1.95%, 5일 후 2.76%의 오차로 예측하여 더 좋은 성능을 보였다. 1일 후 저수율을 예측하는 다변량 모델의 경우, 시계열 저수율 이외에도 date of year (DOY)와 1일 및 5일 누적 강수량이 중요한 변수인 것으로 나타났는데, 이를 통해 볼 때 당일 저수율에 영향을 미치는 강수의 시간적 범위는 5일 정도인 것으로 사료된다.
The Journal of Asian Finance, Economics and Business
/
제8권3호
/
pp.781-791
/
2021
This study aims to analyze the relationship between the business cycles of the ASEAN +3 countries. In addition, the effects of the spillover value on the coincident indicators are determined. This study employs secondary data and uses multivariate time series of five ASEAN countries, namely, Indonesia, Malaysia, Singapore, Thailand, and the Philippines. The proxy was the real gross domestic product (GDP) collected annually from the CEIC, the IMF, and the World Bank for the period from 1964 to 2016. The data was plotted against two time periods, 1964-1998 as the pre-crisis period, and 1999-2016 as the post-crisis period. The index data was changed to the base year 2010. The data was subsequently separated from the trends and the cyclic components. The cyclic components were obtained by using Hondrick-Prescott filter, and them were further analyzed. The analytical method used was Contemporaneous and Cross-Correlation tools. The results showed that, before and after the crisis, the value of the business cycle correlation between ASEAN +3 countries was stronger and moved together at the same level of lag value. The implication of this research was an initial finding of the ASEAN +3 countries' prerequisites for the formation of a common currency.
본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.
지난 동안 낙농업계에서는 다양한 센서 기술과 ICT 응용이 도입되어왔으며 축적된 낙농 데이터를 토대로 과학적인 낙농생산관리가 가능해졌다. 그러나 이러한 시도들은 젖소의 출산이나 우유 생산량과 같은 낙농 생산성에 직접적으로 관여하는 요인들에 대해서만 집중적으로 이루어졌으며 이러한 결과에 근본적으로 관여하는 생리학적 혹은 동물심리학적 요인에 대해서는 연구가 더딘 실정이다. 이 논문에서는 이러한 연구의 일환으로서 젖소의 시간별 행동 데이터로부터 일일 행동패턴을 검출하는 기초적인 방안을 제시하였다. k-평균 군집화를 통해 한 젖소의 1594일간 행동을 네 개의 군집으로 구분하였으며 각 군집에 속한 데이터와 군집의 대푯값을 시각화하여 군집 형성의 합리성을 확인하였다. 또한 개체의 일별 군집 변화를 토대로 군집 개수의 적정성을 판단하였다. 이 연구 결과가 향후 젖소의 이상상태나 질병징후의 포착 연구에 기여하기를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.