• Title/Summary/Keyword: Multivariate simulation

Search Result 173, Processing Time 0.027 seconds

Simulation of multivariate non-Gaussian wind pressure on spherical latticed structures

  • Aung, Nyi Nyi;Ye, Jihong;Masters, F.J.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.223-245
    • /
    • 2012
  • Multivariate simulation is necessary for cases where non-Gaussian processes at spatially distributed locations are desired. A simulation algorithm to generate non-Gaussian wind pressure fields is proposed. Gaussian sample fields are generated based on the spectral representation method using wavelet transforms method and then mapped into non-Gaussian sample fields with the aid of a CDF mapping transformation technique. To illustrate the procedure, this approach is applied to experimental results obtained from wind tunnel tests on the domes. A multivariate Gaussian simulation technique is developed and then extended to multivariate non-Gaussian simulation using the CDF mapping technique. It is proposed to develop a new wavelet-based CDF mapping technique for simulation of multivariate non-Gaussian wind pressure process. The efficiency of the proposed methodology for the non-Gaussian nature of pressure fluctuations on separated flow regions of different rise-span ratios of domes is also discussed.

On The Generation of Multivariate Multinomial Random Numbers

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.105-112
    • /
    • 1996
  • Softwares including random number generation are abundant in modern informative society. But it's hard to get directly multivariate multinomial random numbers from existing softwares. Multivariate multinomial random numbers are greatly used in social and medical sciences. In this paper, we show that desired multivariate multinomial random numbers can be easily generated by the aids of existing random number generating software. Some characteristics of multivariate multinomial distribution are surveyd. Measures of association for the generated random numbers were computed and compared with population ones via simulation study.

  • PDF

Multivariate Time Series Simulation With Component Analysis (독립성분분석을 이용한 다변량 시계열 모의)

  • Lee, Tae-Sam;Salas, Jose D.;Karvanen, Juha;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

A Note on the Simple Chi-Squared Test of Multivariate Normality

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.423-430
    • /
    • 2004
  • We provide the exact form of a Rao-Robson version of the chi-squared test of multivariate normality suggested by Park(2001). This test is easy to apply in practice since it is easily computed and has a limiting chi-squared distribution under multivariate normality. A self-contained formal argument is provided that it has the limiting chi-squared distribution. A simulation study is provided to study the accuracy, in finite samples, of the limiting distribution. Finally, a simulation study in a nonnormal distribution is conducted in order to compare the power of our test with those of other popular normality tests.

  • PDF

An importance sampling for a function of a multivariate random variable

  • Jae-Yeol Park;Hee-Geon Kang;Sunggon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.65-85
    • /
    • 2024
  • The tail probability of a function of a multivariate random variable is not easy to estimate by the crude Monte Carlo simulation. When the occurrence of the function value over a threshold is rare, the accurate estimation of the corresponding probability requires a huge number of samples. When the explicit form of the cumulative distribution function of each component of the variable is known, the inverse transform likelihood ratio method is directly applicable scheme to estimate the tail probability efficiently. The method is a type of the importance sampling and its efficiency depends on the selection of the importance sampling distribution. When the cumulative distribution of the multivariate random variable is represented by a copula and its marginal distributions, we develop an iterative algorithm to find the optimal importance sampling distribution, and show the convergence of the algorithm. The performance of the proposed scheme is compared with the crude Monte Carlo simulation numerically.

Omnibus tests for multivariate normality based on Mardia's skewness and kurtosis using normalizing transformation

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2020
  • Mardia (Biometrika, 57, 519-530, 1970) defined measures of multivariate skewness and kurtosis. Based on these measures, omnibus test statistics of multivariate normality are proposed using normalizing transformations. The transformations we consider are normal approximation and a Wilson-Hilferty transformation. The normalizing transformation proposed by Enomoto et al. (Communications in Statistics-Simulation and Computation, 49, 684-698, 2019) for the Mardia's kurtosis is also considered. A comparison of power is conducted by a simulation study. As a result, sum of squares of the normal approximation to the Mardia's skewness and the Enomoto's normalizing transformation to the Mardia's kurtosis seems to have relatively good power over the alternatives that are considered.

Bootstrap-Based Fault Identification Method (붓스트랩을 활용한 이상원인변수의 탐지 기법)

  • Kang, Ji-Hoon;Kim, Seoung-Bum
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.234-243
    • /
    • 2011
  • Multivariate control charts are widely used to monitor the performance of a multivariate process over time to maintain control of the process. Although existing multivariate control charts provide control limits to monitor the process and detect any extraordinary events, it is a challenge to identify the causes of an out-of-control alarm when the number of process variables is large. Several fault identification methods have been developed to address this issue. However, these methods require a normality assumption of the process data. In the present study, we propose a bootstrapped-based $T^2$ decomposition technique that does not require any distributional assumption. A simulation study was conducted to examine the properties of the proposed fault identification method under various scenarios and compare it with the existing parametric $T^2$ decomposition method. The simulation results showed that the proposed method produced better results than the existing one, especially in nonnormal situations.

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1191-1200
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF

A Test for Multivariate Normality Focused on Elliptical Symmetry Using Mahalanobis Distances

  • Park, Cheol-Yong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.203-212
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is mainly focused on detecting deviations from elliptical symmetry. This test uses Mahalanobis distances of observations to have some power for deviations from multivariate normality. We derive the limiting distribution of the test statistic by a conditional limit theorem. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under two non-normal distributions.

  • PDF