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AbstractAbstractAbstractAbstract

In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows

of an entire complex river system. Normal distribution based model such as MARMA (Multivariate

Autorgressive Moving average) has been a major approach for modeling the multivariate time series.

There are some limitations for the normal based models. One of them might be the unfavorable

data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension

multivariate model requires the very large parameter matrix. As an alternative, one might be

decomposing the multivariate data into independent components and modeling it individually. In 1985,

Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original

data, were taken and were formulated individually. The one of the five scores were modeled with AR-2

while the others are modeled with AR-1 model. From the time series analysis using the scores of the

five components, he noted "principal component time series might provide a relatively simple and

meaningful alternative to conventional large MARMA models". This study is inspired from the

researcher's quote to develop a multivariate simulation model.

The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and

Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used

to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data

into independent components. Here, the autocorrelation structure of the decomposed data is still dominant,

which is inherited from the data of the original domain. (2) Each component is resampled by block

bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From

using the suggested approach one might expect that a) the simulated data are different with the

historical data, b) no data transformation is required (in case of ICA), c) a complex system can be

decomposed into independent component and modeled individually. The model with PCA and ICA are

compared with the various statistics such as the basic statistics (mean, standard deviation, skewness,

autocorrelation), and reservoir-related statistics, kernel density estimate.
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1. Introduction1. Introduction1. Introduction1. Introduction

Stochastic simulation of streamflows has been employed for the evaluation of alternative

designs and operation rules, analysis of significant drought and flood events. The intricacy of

multivariate modeling is not limited only on the hydrologic fields. Statistician describes it as

‘the curse of dimension’ referred from Bellman (1957) as the exponential growth of

hypervolume as a function of dimensionality. Therefore, we suggest the multivariate simulation

model using the decomposition of the multivariate data into independent variables and

modeling the variables with the various univariate model KNN. In the suggested model, the

multivariate variables are decomposed into the other variables that are independent on each

variable. The Principal and Independent component analysis are applied for decomposition of

the variables. From the decomposed data, the univariate parametric and nonparametric models

are applied for simulation. And the individually simulated decomposed data is

back-transformed into the original domain.

2. Multivariate Decomposition Analysis and time series simulation modeling2. Multivariate Decomposition Analysis and time series simulation modeling2. Multivariate Decomposition Analysis and time series simulation modeling2. Multivariate Decomposition Analysis and time series simulation modeling

The multisite data can be decomposed into independent or uncorrelated component with ICA

or PCA, respectively. The composition analysis might be adopted in the multi-site streamflow

modeling. A possible approach is to decompose the multivariate data into independent sources.

Each independent sources are modeled using time series model. And the independent sources

are generated from the fitted model and back-transformed into the original domain. The

applied generation procedure is illustrated in

Fig. 1. Karvanen (2003) tested the

generation of correlated non-gaussian

random variables with generalized lambda

distribution for the sources. For individual

time series modeling for each component,

k-nearest neighbor resampling (Lall and

Sharma, 1996) is applied. Notice that the

estimated sources from ICA are not

normally distributed. Traditional normal

based time series model such as

ARMA(p,q) model might also be employed

with the appropriate transformation for ICA.

3. Modification of Time series modeling of PCA and ICA3. Modification of Time series modeling of PCA and ICA3. Modification of Time series modeling of PCA and ICA3. Modification of Time series modeling of PCA and ICA

Fig. 1. Flowchart for Decomposition andFig. 1. Flowchart for Decomposition andFig. 1. Flowchart for Decomposition andFig. 1. Flowchart for Decomposition and

Bootstrapping or AR(1) modelingBootstrapping or AR(1) modelingBootstrapping or AR(1) modelingBootstrapping or AR(1) modeling
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Time independency and Modified Principal Component Analysis (PCA)Time independency and Modified Principal Component Analysis (PCA)Time independency and Modified Principal Component Analysis (PCA)Time independency and Modified Principal Component Analysis (PCA)

The PCA and ICA algorithms linearly transform the mixture variables into uncorrelated or

independent variables, respectively. However, in their algorithm the timely crossed dependence

structure are not handled. This might lead to remain the time-lagged cross dependence in the

uncorrelated or independent components. The dependent structure in different levels is

presented in Fig. 2 in case of two variables presented as

t

tt

tt

t

t

t
XwXw

XwXw

Y

Y
XWY ⋅=













+

+
=











=

2

22

1

21

2

12

1

11

2

1

The full line implies the full strength of dependency, the dash line no dependency, and the

dashed-two dots line is the loss of dependency. In Fig. 2, the dependent structure of the

multi-site streamflow data (original variables XXXX) presented in (a). From the PCA or ICA

algorithm, the decomposed variables (YYYY) will have the structure in (b). If each variable is

modeled individually represented by (c), the final dependent structure might be resulted in (d).

The underestimation of the serial dependency in the original variables is a significant

consideration.
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Fig. 2. Dependent structure of the mixture variables, X, andFig. 2. Dependent structure of the mixture variables, X, andFig. 2. Dependent structure of the mixture variables, X, andFig. 2. Dependent structure of the mixture variables, X, and

the decomposed variabes, S in different cases : dependentthe decomposed variabes, S in different cases : dependentthe decomposed variabes, S in different cases : dependentthe decomposed variabes, S in different cases : dependent
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In matrix form,

)()( )2( yx ΛΨΛ = (4)
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The decomposed variables with PCA can be modeled utilizing the estimate of Eq.(5). A

parametric model should be used for this purpose. In this study, the decomposed data are

modeled with the simple time series model AR(1) (Salas et al., 1980) formulated as
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][ tYE = yµ =0 as mentioned already. From the Cauchy-Schwarz inequality theorem

(Grimmett and Stirzaker, 2001) such that,
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This implies that the auto-covariance of higher order components can be neglected in case

that the variance of the components is significantly smaller than the low order components.

For example, it can be describe as )()( 11
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)(221 yζ . Rather than using the parameter estimation , optimization approach can be

employed such that
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where, 0)(1 =yllζ where l is the selected orders from the highest. This minimization

problem is solved with the taxi cab method (Powell, 1998).

4. Data Description and Application4. Data Description and Application4. Data Description and Application4. Data Description and Application

The Colorado River System consists of 29 selected gaging stations that characterize the

river flow (Fig. 2). The historical gaged data has been naturalized over the 29 stations

through 2003. Part of the data has been extended by Lee and Salas (2006) back to 1906. Nine

Colorado River streamflow sites are selected for the research area. All selected sites are in

Green river basin. Sites 8, 16, and 20 are chosen as the representative sites. The applied

models is (1) PCA with KNN PCA (2) PCA with AR(1) M_PCA (3) ICA with KNN– –

ICA_ML and (4) ICA with TAR(1) M_ICA_ML. The Skewness and lag-1 correlation– –

are illustrated at Fig. 3. The PCA and M_PCA does not preserve the observed skewness

property while ICA_ML and M_ICA_ML reproduces this statistics pretty well. And lag-1

serial correlation statistics are well preserved in all models except ICA_ML which has slight

underestimation. More detailed statistics are tested, not shown here. Therefore, we can

conclude that ICA decomposition multivariate modeling have the ability to reproduce the
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higher order statistics such as skewness and the time-lagged serial correlation also can be

modeled with appropriate modification.
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Fig. 3. Skewness (Left) and Lag-1 serial correlations (Right) of the historical dataFig. 3. Skewness (Left) and Lag-1 serial correlations (Right) of the historical dataFig. 3. Skewness (Left) and Lag-1 serial correlations (Right) of the historical dataFig. 3. Skewness (Left) and Lag-1 serial correlations (Right) of the historical data

(circle) and 100 set of generated data (boxplot) with PCA, M_PCA, ICM_ML, and(circle) and 100 set of generated data (boxplot) with PCA, M_PCA, ICM_ML, and(circle) and 100 set of generated data (boxplot) with PCA, M_PCA, ICM_ML, and(circle) and 100 set of generated data (boxplot) with PCA, M_PCA, ICM_ML, and

Modified ICA_MLModified ICA_MLModified ICA_MLModified ICA_ML

5. Conclusions5. Conclusions5. Conclusions5. Conclusions

From the modified model, brief conclusions can be made. PCA or ICA with individual

component models can be reasonable alternatives for multivariate model. The modification for

the suggested model to improve the preservation of the historical statistics is successful.

Further improvements is required to account for longer temporal dependence.
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