• Title/Summary/Keyword: Multivariate process

Search Result 295, Processing Time 0.027 seconds

Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process

  • Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.523-530
    • /
    • 2016
  • Most classical control charts assume that processes are serially independent, and autocorrelation among variables makes them unreliable. To address this issue, a variety of statistical approaches has been employed to estimate the serial structure of the process. In this paper, we propose a multioutput least squares support vector regression and apply it to construct a residual multivariate cumulative sum control chart for detecting changes in the process mean vector. Numerical studies demonstrate that the proposed multioutput least squares support vector regression based control chart provides more satisfying results in detecting small shifts in the process mean vector.

Testing Multivariate Normality Based on EDF Statistics (EDF 통계량을 이용한 다변량 정규성검정)

  • Kim Nam-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.241-256
    • /
    • 2006
  • We generalize the $Cram{\acute{e}}r$-von Mises Statistic to test multivariate normality using Roy's union-intersection principle. We show the limit distribution of the suggested statistic is representable as the integral of a suitable Gaussian process. We also consider the computational aspects of the proposed statistic. Power performance is assessed in a Monte Carlo study.

Comparison of accumulate-combine and combine-accumulate methods in multivariate CUSUM charts for mean vector

  • Chang, Duk-Joon;Heo, Sunyeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.919-929
    • /
    • 2013
  • We compared two basic methods, combine-accumulate method and accumulate-combine method, using the past quality information in multivariate quality control procedure for monitoring mean vector of multivariate normal process. When small or moderate shifts have occurred, accumulate-combine method yields smaller average run length (ARL) and average time to signal (ATS) than combine-accumulate method. On the other hand, we have found from our numerical results that combine-accumulate method has better performances in terms of switching behavior than accumulate-combine method. In industry, a quality engineer could select one of the two method under the comprehensive consideration about the required time to signal, switching behavior, and other physical factors in the production process.

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESSES GENERATED BY NEGATIVELY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Ro, Hyeong-Hee
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • Let {<$\mathds{X}_t$} be an m-dimensional linear process of the form $\mathbb{X}_t\;=\sumA,\mathbb{Z}_{t-j}$ where {$\mathbb{Z}_t$} is a sequence of stationary m-dimensional negatively associated random vectors with $\mathbb{EZ}_t$ = $\mathbb{O}$ and $\mathbb{E}\parallel\mathbb{Z}_t\parallel^2$ < $\infty$. In this paper we prove the central limit theorems for multivariate linear processes generated by negatively associated random vectors.

  • PDF

Multivariate EWMA Control Chart for Means of Multiple Quality Variableswith Two Sampling Intervals

  • Chang, Duk-Joon;Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • Because of the equivalence between control chart procedures and hypothesis testing, we propose to use likelihood ratio test (LRT) statistic $Z_i^2$ as the multivariate control statistic for simultaneous monitoring means of the multivariate normal process. Properties and comparisons of the proposed control charts are explored and conducted for matched fixed sampling interval (FSI) and variable sampling interval (VSI) with two sampling interval charts. The result of numerical comparisons shows that EWMA chart with two sampling interval procedure is more efficient than the corresponding FSI chart for small or moderate changes. When large shift of the process has occurred, we also found that Shewhart chart is more efficient than EWMA chart.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

FAULT DETECTION, MONITORING AND DIAGNOSIS OF SEQUENCING BATCH REACTOR FOR INTEGRATED WASTEWATER TREATMENT MANAGEMENT SYSTEM

  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

Some Dependence Structures of Multivariate Processes

  • Jong Il Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.201-208
    • /
    • 1995
  • In the last years there has been growing interest in concepts of positive dependence for families of random variables such that concepts are considerable us in deriving inequalities in probability and statistics. Lehman introdued various concepts of positive dependence for bivariate random variables. A much stronger notions of positive dependence were later considered by Esary, Proschan, and Walkup. Ahmed et al and Ebrahimi and Ghosh also obtained multivariate versions of various bivariate positive dependence as descrived by Lehman. See also Block al. Glaz and Johnson an Barlow and Proschan and the references there. Multivariate processes arise when instead of observing a single process we observe several processes, say $X_19t), \cdots, X_n(t)$ simultaneously. For example, in an engineering context we may want to study the simultaneous variation of current and voltage, or temperature, pressure and volume over time. In economics we may be interested in studying inflation rates and money supply, unemployment and interest rates. We could of course, study each quantity on its own and treat each as a separate univariate process. Although this would give us some information about each quantity it could never give information about the interrelationship between various quantities. This leads us to introduce some concepts of positive and for multivariate stochastic processes. The concepts of positive dependence have subsequently been extended to stochastic processes in different directions by many authors.

  • PDF

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis (다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인)

  • Lee, Changkyu;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.87-92
    • /
    • 2007
  • Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on.This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.

Multivariate control charts for monitoring correlation coefficients in dispersion matrix

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.1037-1044
    • /
    • 2012
  • Multivariate control charts for effectively monitoring every component in the dispersion matrix of multivariate normal process are considered. Through the numerical results, we noticed that the multivariate control charts based on sample statistic $V_i$ by Hotelling or $W_i$ by Alt do not work effectively when the correlation coefficient components in dispersion matrix are increased. We propose a combined procedure monitoring every component of dispersion matrix, which operates simultaneously both control charts, a chart controlling variance components and a chart controlling correlation coefficients. Our numerical results show that the proposed combined procedure is efficient for detecting changes in both variances and correlation coefficients of dispersion matrix.