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Abstract

We compared two basic methods, combine-accumulate method and accumulate-
combine method, using the past quality information in multivariate quality control
procedure for monitoring mean vector of multivariate normal process. When small or
moderate shifts have occurred, accumulate-combine method yields smaller average run
length (ARL) and average time to signal (ATS) than combine-accumulate method. On
the other hand, we have found from our numerical results that combine-accumulate
method has better performances in terms of switching behavior than accumulate-
combine method. In industry, a quality engineer could select one of the two method
under the comprehensive consideration about the required time to signal, switching
behavior, and other physical factors in the production process

Keywords: Accumulate-combine method, combine-accumulate method, Markov chain
method, switching behavior.

1. Introduction

Control charts are used for continuously monitoring the production process to quickly
detect the shifts that may produce any deterioration in the quality of the product. Usually,
the quality of the output is determined by multiple quality variables or characteristics.

Shewhart chart, one of the most widely used control charts, was first proposed by Shewhart
in 1931. The Shewhart chart has a good ability to detect quickly large shifts in monitored
parameter and is easy to implement the process. However, the Shewhart chart uses only the
information from the last sample and so it is insensitive to small or moderate shifts in the
production process.

In order to overcome this difficulty, Page (1955) added warning lines within the action
lines of the standard Shewhart chart. His additional rule is that if r out of the last N sample
means fall between the warning lines and control limits, then the chart signals. He showed
that X control charts with warning lines are more efficient than the standard X charts in
detecting small shifts in the process mean.
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Another modification of the chart with adding supplementary runs rules was recommended
by Moore (1958) and Page (1962). Champ and Woodall (1987) obtained the exact run length
properties of Shewhart charts with supplementary runs rules by using Markov chain method.

Cumulative sum (CUSUM) chart using the past sample information was first proposed
by Page (1954). CUSUM charts are usually used instead of standard Shewhart charts when
the detection of small shifts in a process is important. As demonstrated by Champ and
Woodall (1987), the superiority of the CUSUM chart over the Shewhart chart also holds when
the Shewhart chart is augmented with runs rules. Barnard (1959) developed the CUSUM
procedure as a sequential likelihood ratio test (SPRT) for testing the hypothesis that the
process mean is equal to the target value against the alternative that it is not.

There are two basic methods using the past sample information in multivariate qual-
ity control chart, combine-accumulate method and accumulate-combine method. Crosier
(1988) proposed a multivariate CUSUM chart with accumulate-combine method, and Pig-
natiello and Runger (1990) proposed new CUSUM charts with accumulate-combine method.
They compared accumulate-combine method and combine-accumulate method in terms of
ARL under fixed sampling interval (FSI) scheme. They showed through numerical results
that accumulate-combine method is more efficient than combine-accumulate method only
in terms of ARL. Multivariate control charts with variable sampling interval (VSI) scheme
were studied by Cho (2010), Im and Cho (2009) and Chang and Heo (2010).

In this paper, we compared the efficiency of combine-accumulate method and accumulate-
combine method in terms of both required time to signal and switching behavior when
one operates VSI CUSUM procedure. In addition, we suggest some criteria that a quality
engineer in industry should consider before selecting one of the two methods.

2. Description of some control procedures

Suppose that the production process of interest has p quality characteristics whose distri-
bution is multivariate normal with mean vector µ and dispersion matrix Σ, and (µ

0
,Σ0) is

the known target process values for (µ,Σ). The target µ
0

and Σ0 of p quality characteristics
is represented as

µ0 =


µ10

µ20

...
µp0

 and Σ0 =


σ2
10 ρ120σ10σ20 · · · ρ1p0σ10σp0

ρ210σ10σ20 σ2
20 · · · ρ2p0σ20σp0

...
...

. . .
...

ρp10σ10σp0 ρp20σ20σp0 · · · σ2
p0

.
For successive samples, multivariate control procedure for monitoring mean vector µ of

multivariate normal process can be interpreted as repeated tests of the significance of the
form

H0 : µ = µ
0

H1 : µ 6= µ
0

(2.1)

For simplicity in this paper, we will assume that µ
0

= 0, and the more general case can be
handled easily by translation. At each sampling occasion i (i = 1, 2, · · · ), we take a sequence
of random vector X ′i = (X ′i1, X

′
i2, · · · , X

′
in) where X ′ij = (Xij1, Xij2, · · · , Xijp). Thus Xi
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is an np × 1 column vector. Then the jkth element Xijk of Xi is the jth observation for
kth quality characteristic at each sampling occasion i (j = 1, 2, · · · , n; k = 1, 2, · · · , p). We
assume that the sequential observation vectors between and within samples are independent
and identically distributed.

To test the hypothesis in (2.1), we can obtain multivariate control statistic for monitoring
µ by using the likelihood ratio test (LRT) statistic for testing H0 : µ = µ

0
where Σ0 is known.

Likelihood ratio λi at the ith sample can be expressed as λi=exp
[
−n(Xi−µ)′Σ−10 (Xi−µ)/2

]
.

By simple transformation, we can obtain LRT statistic χ2
i as

χ2
i = n(Xi − µ)′Σ−10 (Xi − µ). (2.2)

Since the LRT statistic χ2
i has a chi-square distribution with p degrees of freedom, the

null hypothesis should be rejected at time i if χ2
i > χα(p) where χα(p) is the upper 100α

percentage point of the χ2 distribution with p degrees of freedom. The noncentrality param-
eter associated with χ2 is λ2(µ) = n(µ− µ

0
)′Σ−10 (µ− µ

0
) and the scale λ2(µ) is often used

to represent a measure of the distance of µ from µ
0
. This measure of distance is called the

statistical distance by Johnson and Wichern (1988).
Shewhart χ2 chart signals whenever χ2

i > χα(p), and the ARL of this chart can be
calculated as 1/p where p denotes the probability that the chart statistic χ2

i exceeds the
upper control limit (UCL) χα(p). Therefore, the ARL values of the multivariate Shewhart
χ2 chart depend on µ and Σ only through the statistical distance

d =
√
n(µ− µ

0
)′Σ−10 (µ− µ

0
).

Therefore, it is possible to consider the ARL as a function of d. And we will henceforth
call d as distance, which means the square root of the noncentrality parameter λ2(µ).

Traditional practice in using a control chart is to take samples from the process at FSI and
the properties of control charts have been developed when the sampling interval between
samples is fixed. In recent years, application of VSI control charts has become quite frequent
and several papers have been published about them in which the sampling interval is varied
as a function of what is observed from the process. Cui and Reynolds (1988) considered VSI
Shewhart X -chart with runs rules using Markov chain method and Reynolds et al. (1990)
considered the properties of VSI CUSUM charts.

In the theoretical and numerical comparisons between FSI and VSI procedures, many re-
searchers showed that the VSI schemes are substantially more efficient than the FSI schemes
in terms of the required time to signal when the process has shifted.

For the VSI χ2 Shewhart chart based on LRT statistic, suppose that the two sampling
interval

d1 is used when χ2 ∈ (gS , hS ]

d2 is used when χ2 ∈ (0, gS ],

where d1 < d2. The parameters gS , hS can be obtained from chi-square distribution to
guarantee a desired ARL and ATS.

One disadvantage of VSI procedure in industry is that frequent switching between short
and long sampling intervals requires more cost and effort to administer the process than
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corresponding FSI procedure. Amin and Letsinger (1991) described general procedures for
VSI scheme and presented that the average number of switches to signal (ANSW) of the
CUSUM and EWMA procedures exists far fewer than the Shewhart procedure. Bai and Lee
(2002) investigated three switching rules to the X control and the expressions of the ATS
and ANSW were derived with Markov chain approach.

Since ARL and ATS do not provide any switching information between short and long
sampling intervals of VSI schemes, it is necessary to define the number of switches (NSW)
as the number of switches made from the start of the process until the chart signals, and
let ANSW be the expected value of the NSW. The ANSW can be obtained by using Wald’s
identity as follows

ANSW = (ARL− 1) · P (switch) (2.3)

where the ARL can be approximated by a Markov chain approach for the multivariate
CUSUM procedures in (3.2). The probability of switch is given by

P (switch) = P (d1) · P (d2|d1) + P (d2) · P (d1|d2) (2.4)

where P (di) is the probability of using sampling interval di, and P (di|dj) is the conditional
probability of using sampling interval di in the current sample given that the sampling
interval dj (di 6= dj) was used in the previous sample.

To evaluate P (switch) in VSI Shewhart χ2 scheme, we devide the in control region C =
(0, hS) into r states. The region C1 = (0, gS ] using long sampling interval d2 is divided into
m states E1, E2, · · · , Em and the region C2 = (gS , hS ] using short sampling interval d1 is
divided into (r −m) states Em+1, Em+2, · · · , Er.

Then the probability of switch P (switch) can be expressed as

P (switch) =

r∑
i=m+1

P (χ2
k ∈ Ei) ·


m∑
j=1

P (χ2
k+1 ∈ Ej |χ2

k ∈ Ei)

 (2.5)

+

m∑
i=1

P (χ2
k ∈ Ei) ·


r∑

j=m+1

P (χk + 12 ∈ Ej |χ2
k ∈ Ei)

 .

Because the Shewhart χ2 chart uses only the information from the last sample and the
successive observation vectors are independent, the conditional probabilities in (2.5) can be
expressed as

∑m
j=1 P (χ2

k+1 ∈ Ej |χ2
k ∈ Ei) =

∑r
j=m+1 P (χ2

k+1 ∈ Ej).
Then the transition probability pij is as follows. For i = 1, 2, · · · ,m

P [χ2
i ∈ Ei] = F (jw)− F [(j − 1)w]

and

pij = F [(g + (j −m)v]− F [g − (j −m− 1)v], (j = m+ 1,m+ 2, · · · , r).

And, for i = m+ 1,m+ 2, · · · , r

P [χ2
i ∈ Ei] = F [(g + (i−m)v]− F [g − (i−m− 1)v]
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and

pij = F (jw)− F [(j − 1)w], (j = 1, 2, · · · ,m)

where F (·) is the distribution function of control statistic, v = (h−g)/(r−m) and ω = g/m.
In our computation using Markov chain method, P (switch) tends to be stabilized when the
number of states r is greater than 100.

For comparison of the switching behavior of the considered charts, we also define N(di →
dj) as the number of switching from di to dj (i 6= j). Since frequent switching between
different sampling intervals is a complicating factor in the application of VSI procedure, the
small scale of N(di → dj) (i 6= j) is desirable in terms of operating control chart.

3. CUSUM chart with combine-accumulate method

The basic Shewhart chart, although simple to understand and apply, uses only the infor-
mation in the current sample and is thus relatively inefficient in detecting small shifts. On
the other hand, CUSUM chart directly incorporates all of the information in the sequence of
samples by using a control statistic which is a cumulative sum of statistics computed from
each sample. When the detection of small or moderate shifts in the process parameters is
important, CUSUM chart is a good alternative to the Shewhart chart.

Woodall and Ncube (1985) extended the univariate CUSUM procedure to the multivariate
case to detect a shift in the mean vector of a p -variate normal distribution, operate p one-side
or two-sided CUSUM schemes simultaneously and evaluate the performance of the collection
of schemes.

We can consider control procedures as a sequence of independent tests where each test is
actually equivalent to a SPRT for testing H0 : µ = µ

0
vs H1 : µ 6= µ

0
. This sequence of

SPRT’s is equivalent to using the CUSUM statistic

Ŷi = max
{
Ŷi−1 + (χ2

i − k), 0
}
, (3.1)

where χ2
i = n(X̄i − µ)′Σ−10 (X̄i − µ), Ŷ0 = ω (ω ≥ 0) is a constant, and the reference value

k (≥ 0). The parameter k is usually determined by the scale of shift which the CUSUM is

designed to detect. This chart signals whenever Ŷi > hc1.
For the purpose of using Markov chain method and adding VSI feature to the CUSUM

chart in (3.1), Reynolds et al. (1990) proposed a modified CUSUM statistic

Yi = max {Yi−1, 0}+ (χ2
i − k), (3.2)

where Y0 = ω (ω ≥ 0) is a constant. The difference between Ŷi and Yi is that Ŷi immediately
resets negative CUSUM value to 0, and Yi records the negative CUSUM value and then
starts the cumulation from 0 for the next sample. Except for recording of negative CUSUM
values, Ŷi and Yi are equivalent. The reason for recording negative CUSUM values is that
these negative values may be needed to specify the sampling intervals for VSI procedures.

For the VSI CUSUM chart, suppose that the sampling interval

d1 is used when Yi ∈ (gC1, hC1],

d2 is used when Yi ∈ (−k, gC1],
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where gC1 ≤ hC1.
In this study, we obtained the design parameters gC1 and hC1 by Markov chain method.

Under the process in control and out of control states, the numerical performances and
switching behaviors of the combine-accumulate method based on (3.1) or (3.2) were eval-
uated by using Markov chain method or simulation with 10,000 iterations. Markov chain
method for multivariate EWMA chart can be referred from Chang et al. (2003).

4. CUSUM chart with accumulate-combine method

For multivariate quality control procedures, there are two basic methods using the past
sample information. The first method, called combine-accumulate method, combines the
multivariate data into a univariate statistic and then accumulate over past samples. The
second method, called accumulate-combine method, accumulates the past sample informa-
tion for each process parameter to be monitored and then either uses separate charts for
each process parameter or combines the separate accumulations into a univariate statistic.

Under the accumulate-combine method, after the past sample information is accumulated
for each process parameter, we can either use separate CUSUM chart and look at joint
properties of the separate charts, or form a univariate chart statistic from the multivariate
accumulations.

Up to the present, most of the studies in multivariate CUSUM charts with accumulate-
combine technique have been concerned only for controlling the mean vector µ of a multivari-
ate normal process N(µ,Σ). In this section, our concern on accumulate-combine technique
is restricted only on the shifts of mean vector of a multivariate normal process.

Crosier (1988) proposed a multivariate CUSUM chart which accumulates the X̄i vectors
before producing the quadratic forms. This chart is based on the statistics

Ci =
{
n(Si−1 − X̄i − µ0

)′Σ−10 (Si−1 + X̄i − µ0
)
} 1

2

and

Si =

{
0 if Ci ≤ k1
(Si−1 + X̄i − µ0

)(1− k1/Ci) if Ci > k1,

where i = 1, 2, · · · , S0 = 0 and k1 > 0. This multivariate CUSUM scheme signals when

CYi =
{
n(S′iΣ

−1
0 S

1
2
i

}
> hi (4.1)

where h1 > 0. He gave the proof that the distribution of the multivariate CUSUM chart
statistic CYi depends only on the value of noncentrality parameter.

Pignatiello and Runger (1990) proposed a new multivariate CUSUM procedure based
on accumulate-combine approach for controlling mean vector of the multivariate normal
process. This new CUSUM procedure is based on a quadratic form of the mean vector. This
chart, called MC1, is based on the following vector of multivariate sum

MCi =

i∑
j=i−li+1

(X̄j − µ0
).
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The norm of MCi, ||MCi|| =
√
nMC ′iΣ

−1
0 MCi, is a measure of the distance between

the process mean vector and the target mean vector for the process. They constructed MC1
chart as

MCi = max
{

0, (nMC ′iΣ
−1
0 MCi)

1
2 − k2li

}
(4.2)

where k2 > 0,

li =

{
li−1 + 1 if MC1i−1 > 0

1 otherwise

and li can be interpreted as the number of subgroups since the most recent renewal of the
CUSUM has occurred (i = 1, 2, · · · ). The MC1 chart operates by plotting MC1i on a control
chart and an out of control signal is given as soon as MC1i > hC2 where hC2 > 0.

Pignatiello and Runger (1990) found that the MC1 chart in (4.2) has a superior ARL
performance than a multivariate CUSUM chart based on the combine-accumulate approach.
And they also proved that the ARL performances of the MC1 chart depends only on the
noncentrality parameter. The multivariate CUSUM chart proposed by Crosier (1988) is
similar to MC1 chart. Croiser’s multivariate CUSUM chart is somewhat more complicated
than MC1 chart, but it has a similar ARL performance.

For VSI CUSUM chart based on MC1, we suppose the sampling interval

d1 is used when MC 1i ∈ (gC2, hC2],

d2 is used when MC 1i ∈ (0, gC2],

where gC2 ≤ hC2. The ARL performances and switching behaviors of the FSI or VSI MC1
charts based on MC1i cannot be modeled as a simple stationary Markov chain as described
in Brook and Evans (1972). For this reason, we obtained the design parameters hC2, gC2

satisfying the desired ARL and ATS through Monte Carlo simulation.

5. Concluding remarks and conclusion

Comparisons between combine-accumulate method and accumulate-combine method of
multivariate CUSUM chart for monitoring mean vectorare performed. And Shewhart χ2

chart which does not use the past sample information is also compared.
In order to compare the ARL performances and switching behaviors of the considered

charts, some kinds of standards for comparison are necessary. For simplicity in our com-
putation, we assume that target mean vector µ

0
= 0′, and all diagonal and off-diagonal

elements of Σ0 are 1 and 0.5, respectively. The numerical results were obtained when the
ARL and ATS of the in control state was approximately equal to 200, the sampling in-
terval before the first sample d0 = 1, d1 = 0.1, d2 = 1.9, and the sample size n for each
characteristic was five for p = 2 or 4.

The numerical performances of the considered multivariate charts in (2.2), (3.2) and (4.2)
are determined solely by the distance d of the off-target mean µ from the on target mean
µ
0
, not by the particular direction or location of the mean.
Because of direction invariance, we evaluate performances for shifts in the process mean

that are of the form µ = (µ1, 0, · · · , 0)′ for p = 2 or 4. Shifts of these forms were investigated
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for distances 0.5, 1.0, · · · , 5.0. The values of µ1 are shown in the Table 5.1 and were computed
so that the distance d of µ = (µ1, 0, · · · , 0)′ from µ

0
is given as in the first column in Table

5.1.
After the reference values of the considered CUSUM charts have been determined, the

design parameters h′s and g′s of the corresponding CUSUM charts were calculated by either
Markov chains with the number of transient states r = 100 or simulation with 10,000
iterations. And the ARL, ATS and switching behaviors, when the process has on-target or
changed, were also obtained by either Markov chains with the number of transient states
r = 100 or simulation with 10,000 runs.

When large shift of the process has occurred, Shewhart χ2 chart is effective in terms of
both the required time to signal and switching behavior. At distance d over 3.0, we found
in Tables 5.2-5.4 and Figure 5.2 that Shewhart χ2 chart is effective in the performances
including ARL, ATS, ANSW, P (switch). However, it is hard to recommend Shewhart χ2

chart in the case of small or moderate shifts that is key interest in the production process.
From the results in Figure 5.1 and Tables 5.3-5.4, multivariate CUSUM chart with accu-

mulate -combine method appears to be a good control charting device for detecting small or
moderate shifts in terms of required time to signal.

On the other hand, multivariate CUSUM chart with combine-accumulate method shows
better performance than accumulate-combine method in terms of switching behavior, such
as P (switch), ANSW and N(d2 → d1). And we also found that at the small values of
the reference value, the required time to signal, ARL and ATS, and switching behaviors,
P (switch), ANSW and N(d2 → d1), were reduced in both accumulate-combine and combine-
accumulate methods.

When small or moderate shifts have occurred, accumulate-combine method yields smaller
ARL and ATS than combine-accumulate method. On the other hand, we have found from
the results in Tables 5.3-5.4 and Figures 5.1-5.4 that combine-accumulate method has better
performances than accumulate-combine method in terms of switching behavior.
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Table 5.1 The values of µ1 with different d of µ from µ
0

(ρ0 = 0.5, n = 5)

d p = 2 p = 4 d p = 2 p = 4
0.00 0.0000000 0.0000000 0.0 0.0000000 0.0000000
0.04 0.0154920 0.0141421 0.5 0.1936492 0.1767767
0.08 0.0309839 0.0282843 1.0 0.3872983 0.3535534
0.12 0.0464758 0.0424264 1.5 0.5809475 0.5303301
0.16 0.0619677 0.0565686 2.0 0.7745966 0.7071068
0.20 0.0774596 0.0707107 2.5 0.9682459 0.8838835
0.24 0.0929516 0.0848528 3.0 1.1618950 1.0606600
0.28 0.1084436 0.0989949 3.5 1.3555440 1.2374370
0.32 0.1239354 0.1131371 4.0 1.5491930 1.4142140

Table 5.2 Numerical results for Shewhart χ2 chart (p = 4)

d ARL ATS ANSW P (switch) N(d1 → d2) N(d2 → d1)
on-target 200.00 199.99 98.51 0.493 49.25 49.25

0.5 138.15 130.48 67.32 0.487 33.66 31.78
1.0 60.96 48.70 27.51 0.451 13.75 10.94
1.5 24.62 15.23 8.75 0.355 4.37 2.64
2.0 10.63 5.04 2.31 0.217 1.15 0.48
2.5 5.20 2.18 0.49 0.095 0.25 0.07
3.0 2.93 1.37 0.08 0.028 0.04 0.01
3.5 1.91 1.13 0.01 0.005 0.00 0.00
4.0 1.42 1.05 0.00 0.001 0.00 0.00

Table 5.3 Numerical results for CUSUM chart with combine-accumulate method (p = 4, k = 4.2)

d ARL ATS ANSW P (switch) N(d1 → d2) N(d2 → d1)
on-target 200.00 200.00 24.22 0.121 12.14 12.08

0.5 99.24 83.06 11.95 0.120 6.01 5.94
1.0 32.19 20.94 4.07 0.126 2.09 1.97
1.5 14.50 9.02 2.37 0.164 1.29 1.08
2.0 8.29 5.33 1.84 0.222 1.09 0.75
2.5 5.44 3.73 1.54 0.283 1.02 0.52
3.0 3.90 2.90 1.31 0.336 0.99 0.32
3.5 2.98 2.44 1.13 0.379 0.96 0.18
4.0 2.39 2.19 0.97 0.406 0.89 0.08

Up to the present, some studies showed through numerical results that accumulate-combine
method is better than combine-accumulate method only in terms of the required time to
signal. In our numerical results, we also have the same results with them in terms of the
time required to signal.

However, we have found that when the switching behavior is considered along with the
time required to signal, it is hard to conclude that accumulate-combine method has always
better performances than combine-accumulate method.

Therefore, when a quality engineer in industry selects one of two methods, accumulate-
combine method and combine-accumulate method, he/she could select one of them under
the comprehensive consideration about the required time to signal, switching behavior, and
additional efforts and costs in the process of operating VSI chart. In addition, he/she could
also consider physical time interval between short sampling interval d1 and long sampling
interval d2 before selecting one of them.
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Table 5.4 Numerical results for CUSUM chart with accumulate-combine method (p = 4, k = 0.5)

d ARL ATS ANSW P (switch) N(d1 → d2) N(d2 → d1)
on-target 200.01 200.00 47.80 0.239 24.05 23.75

0.5 47.07 35.37 10.04 0.213 5.18 4.86
1.0 13.45 6.98 2.72 0.202 1.56 1.16
1.5 7.36 3.56 1.80 0.244 1.14 0.65
2.0 5.11 2.37 1.46 0.285 1.04 0.42
2.5 3.99 1.83 1.28 0.320 1.01 0.26
3.0 3.30 1.52 1.16 0.351 1.00 0.15
3.5 2.83 1.33 1.08 0.381 1.00 0.08
4.0 2.49 1.21 1.03 0.415 1.00 0.04
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