• Title/Summary/Keyword: Multivariate Normal Distribution

Search Result 104, Processing Time 0.021 seconds

Saddlepoint Approximation to the Linear Combination Based on Multivariate Skew-normal Distribution (다변량 왜정규분포 기반 선형결합통계량에 대한 안장점근사)

  • Na, Jonghwa
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.809-818
    • /
    • 2014
  • Multivariate skew-normal distribution(distribution that includes multivariate normal distribution) has been recently applied to many application areas. We consider saddlepoint approximation for a statistic of linear combination based on a multivariate skew-normal distribution. This approach can be regarded as an extension of Na and Yu (2013) that dealt saddlepoint approximation for the distribution of a skew-normal sample mean for a linear statistic and multivariate version. Simulations results and examples with real data verify the accuracy and applicability of suggested approximations.

MULTIVARIATE JOINT NORMAL LIKELIHOOD DISTANCE

  • Kim, Myung-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1429-1433
    • /
    • 2009
  • The likelihood distance for the joint distribution of two multivariate normal distributions with common covariance matrix is explicitly derived. It is useful for identifying outliers which do not follow the joint multivariate normal distribution with common covariance matrix. The likelihood distance derived here is a good ground for the use of a generalized Wilks statistic in influence analysis of two multivariate normal data.

  • PDF

Saddlepoint approximation to the distribution function of quadratic forms based on multivariate skew-normal distribution (다변량 왜정규분포 기반 이차형식의 분포함수에 대한 안장점근사)

  • Na, Jonghwa
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.571-579
    • /
    • 2016
  • Most of studies related to the distributions of quadratic forms are conducted under the assumption of multivariate normal distribution. In this paper, we suggested an approximation to the distribution of quadratic forms based on multivariate skew-normal distribution as alternatives for multivariate normal distribution. Saddlepoint approximations are considered and the accuracy of the approximations are verified through simulation studies.

A Goodness-of-Fit Test for Multivariate Normal Distribution Using Modified Squared Distance

  • Yim, Mi-Hong;Park, Hyun-Jung;Kim, Joo-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.607-617
    • /
    • 2012
  • The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.

Multivariate measures of skewness for the scale mixtures of skew-normal distributions

  • Kim, Hyoung-Moon;Zhao, Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.109-130
    • /
    • 2018
  • Several measures of multivariate skewness for scale mixtures of skew-normal distributions are derived. As a special case, those of multivariate skew-t distribution are considered in detail. Furthermore, the similarities, differences, and behavior of these measures are explored for cases of some specific members of the multivariate skew-normal and skew-t distributions using a simulation study. Since some measures are vectors, it is better to take all measures in the same scale when comparing them. In order to attain such a set of comparable indices, the sample version is considered for each of the skewness measures that are taken as test statistics for the hypothesis of t distribution against skew-t distribution. An application is reported for the data set consisting of 71 total glycerol and magnesium contents in Grignolino wine.

Multivariate CTE for copula distributions

  • Hong, Chong Sun;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.421-433
    • /
    • 2017
  • The CTE (conditional tail expectation) is a useful risk management measure for a diversified investment portfolio that can be generally estimated by using a transformed univariate distribution. Hong et al. (2016) proposed a multivariate CTE based on multivariate quantile vectors, and explored its characteristics for multivariate normal distributions. Since most real financial data is not distributed symmetrically, it is problematic to apply the CTE to normal distributions. In order to obtain a multivariate CTE for various kinds of joint distributions, distribution fitting methods using copula functions are proposed in this work. Among the many copula functions, the Clayton, Frank, and Gumbel functions are considered, and the multivariate CTEs are obtained by using their generator functions and parameters. These CTEs are compared with CTEs obtained using other distribution functions. The characteristics of the multivariate CTEs are discussed, as are the properties of the distribution functions and their corresponding accuracy. Finally, conclusions are derived and presented with illustrative examples.

Monte Carlo Estimation of Multivariate Normal Probabilities

  • Oh, Man-Suk;Kim, Seung-Whan
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.443-455
    • /
    • 1999
  • A simulation-based approach to estimating the probability of an arbitrary region under a multivariate normal distribution is developed. In specific, the probability is expressed as the ratio of the unrestricted and the restricted multivariate normal density functions, where the restriction is given by the region whose probability is of interest. The density function of the restricted distribution is then estimated by using a sample generated from the Gibbs sampling algorithm.

  • PDF

An approximate fitting for mixture of multivariate skew normal distribution via EM algorithm (EM 알고리즘에 의한 다변량 치우친 정규분포 혼합모형의 근사적 적합)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.513-523
    • /
    • 2016
  • Fitting a mixture of multivariate skew normal distribution (MSNMix) with multiple skewness parameter vectors via EM algorithm often requires a highly expensive computational cost to calculate the moments and probabilities of multivariate truncated normal distribution in E-step. Subsequently, it is common to fit an asymmetric data set with MSNMix with a simple skewness parameter vector since it allows us to compute them in E-step in an univariate manner that guarantees a cheap computational cost. However, the adaptation of a simple skewness parameter is unrealistic in many situations. This paper proposes an approximate estimation for the MSNMix with multiple skewness parameter vectors that also allows us to treat them in an univariate manner. We additionally provide some experiments to show its effectiveness.

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.

On the Distribution of the Scaled Residuals under Multivariate Normal Distributions

  • Cheolyong Park
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.591-597
    • /
    • 1998
  • We prove (at least empirically) that some forms of the scaled residuals calculated from i.i.d. multivariate normal random vectors are ancillary. We further show that, if the scaled residuals are ancillary, then they have the same distribution whatever form of rotation is rosed to remove sample correlations.

  • PDF