• Title/Summary/Keyword: Multivalued nonexpansive mapping

Search Result 7, Processing Time 0.027 seconds

CONVERGENCE THEOREMS FOR A PAIR OF ASYMPTOTICALLY AND MULTIVALUED NONEXPANSIVE MAPPING IN CAT(0) SPACES

  • AKKASRIWORN, NAKNIMIT;SOKHUMA, KRITSANA
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.177-189
    • /
    • 2015
  • In this paper, we prove ${\Delta}$-convergence theorems for Ishikawa iteration of asymptotically and multivalued nonexpansive mapping in CAT(0) spaces. This results we obtain are analogs of Banach spaces results of Sokhuma [13].

An Ishikawa Iteration Scheme for two Nonlinear Mappings in CAT(0) Spaces

  • Sokhuma, Kritsana
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.665-678
    • /
    • 2019
  • We construct an iteration scheme involving a hybrid pair of mappings, one a single-valued asymptotically nonexpansive mapping t and the other a multivalued nonexpansive mapping T, in a complete CAT(0) space. In the process, we remove a restricted condition (called the end-point condition) from results of Akkasriworn and Sokhuma [1] and and use this to prove some convergence theorems. The results concur with analogues for Banach spaces from Uddin et al. [16].

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

Fixed Point Theorems in Product Spaces

  • Bae, Jong Sook;Park, Myoung Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1993
  • Let E and F be Banach spaces with $X{\subset}E$ and $Y{\subset}F$. Suppose that X is weakly compact, convex and has the fixed point property for a nonexpansive mapping, and Y has the fixed point property for a multivalued nonexpansive mapping. Then $(X{\oplus}Y)_p$, $1{\leq}$ P < ${\infty}$ has the fixed point property for a multi valued nonexpansive mapping. Furthermore, if X has the generic fixed point property for a nonexpansive mapping, then $(X{\oplus}Y)_{\infty}$ has the fixed point property for a multi valued nonexpansive mapping.

  • PDF

CONVERGENCE THEOREMS OF PROXIMAL TYPE ALGORITHM FOR A CONVEX FUNCTION AND MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Aggarwal, Sajan;Uddin, Izhar;Pakkaranang, Nuttapol;Wairojjana, Nopparat;Cholamjiak, Prasit
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this paper we study the weak and strong convergence to minimizers of convex function of proximal point algorithm SP-iteration of three multivalued nonexpansive mappings in a Hilbert space.

Fixed Point Theorems for Multivalued Mappings in Banach Spaces

  • Bae, Jong Sook;Park, Myoung Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.3 no.1
    • /
    • pp.103-110
    • /
    • 1990
  • Let K be a nonempty weakly compact convex subset of a Banach space X and T : K ${\rightarrow}$ C(X) a nonexpansive mapping satisfying $P_T(x){\cap}clI_K(x){\neq}{\emptyset}$. We first show that if I - T is semiconvex type then T has a fixed point. Also we obtain the same result without the condition that I - T is semiconvex type in a Banach space satisfying Opial's condition. Lastly we extend the result of [5] to the case, that T is an 1-set contraction mapping.

  • PDF

ITERATIVE PROCESS FOR FINDING FIXED POINTS OF QUASI-NONEXPANSIVE MULTIMAPS IN CAT(0) SPACES

  • Pitchaya Kingkam;Jamnian Nantadilok
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • Let 𝔼 be a CAT(0) space and K be a nonempty closed convex subset of 𝔼. Let T : K → 𝓟(K) be a multimap such that F(T) ≠ ∅ and ℙT(x) = {y ∈ Tx : d(x, y) = d(x, Tx)}. Define sequence {xn} by xn+1 = (1 - α)𝜈n⊕αwn, yn = (1 - β)un⊕βwn, zn = (1-γ)xn⊕γun where α, β, γ ∈ [0; 1]; un ∈ ℙT (xn); 𝜈n ∈ ℙT (yn) and wn ∈ ℙT (zn). (1) If ℙT is quasi-nonexpansive, then it is proved that {xn} converges strongly to a fixed point of T. (2) If a multimap T satisfies Condition(I) and ℙT is quasi-nonexpansive, then {xn} converges strongly to a fixed point of T. (3) Finally, we establish a weak convergence result. Our results extend and unify some of the related results in the literature.