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CONVERGENCE THEOREMS FOR A PAIR OF

ASYMPTOTICALLY AND MULTIVALUED NONEXPANSIVE

MAPPING IN CAT(0) SPACES

Naknimit Akkasriworn and Kritsana Sokhuma

Abstract. In this paper, we prove △-convergence theorems for Ishikawa
iteration of asymptotically and multivalued nonexpansive mapping in
CAT(0) spaces. This results we obtain are analogs of Banach spaces
results of Sokhuma [13].

1. Introduction

Let (X, d) be a geodesic metric space. We denote by FB(E) the collection
of all nonempty closed bounded subsets of X , we also write K(X) to denote
the collection of all nonempty compact subsets of X . Let H be the Hausdorff
metric with respect to d, that is,

H(A,B) = max{ sup
x∈A

dist(x,B), sup
y∈B

dist(y,A) }, A,B ∈ FB(X),

where dist(x,B) = inf{d(x, y) : y ∈ B} is the distance from the point x to the
subset B.

A mapping t : E → E is said to be nonexpansive if d(tx, ty) ≤ d(x, y) for
all x, y ∈ E. A point x is called a fixed point of t if tx = x. A multi-valued
mapping T : E → FB(X) is said to be nonexpansive if H(Tx, T y) ≤ d(x, y)
for all x, y ∈ E. A point x is called a fixed point for a multivalued mapping T
if x ∈ Tx.

Let E be a subset of a metric space X . A mapping T : E → 2X with
nonempty bounded values is nonexpansive provided H(Tx, T y) ≤ d(x, y) for
all x, y ∈ E. Let t : E → E and T : E → 2X with T (x) ∩ E 6= ∅ for x ∈ E.
Then t and T are said to be commuting mappings if t(y) ∈ T (t(x)) ∩E for all
y ∈ T (x) ∩ E and for all x ∈ E. A point z ∈ X is called a center [5] for a
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mapping t : E → X if for each x ∈ E, d(z, t(x)) ≤ d(z, x). The set Z(t) denotes
the set of all centers of the mapping t.

We use the notation Fix(T ) stands for the set of fixed points of a mapping
T and Fix(t) ∩ Fix(T ) stands for the set of common fixed points of t and T .
Precisely, a point x is called a common fixed point of t and T if x = tx ∈ Tx.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is
a map c from a closed interval [0, s] ⊂ R to X such that c(0) = x, c(s) = y,
and d(c(t), c(u)) = |t− u| for all t, u ∈ [0, s]. In particular, c is an isometry and
d(x, y) = s. The image α of c is called a geodesic (or metric) segment joining x
and y. When it is unique this geodesic segment is denoted by [x, y]. The space
(X, d) is said to be a geodesic space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y
includes every geodesic segment joining any two of its points.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points x1, x2, x3 in X (the vertices of △) and a geodesic segment between
each pair of vertices (the edges of △). A comparison triangle for the geodesic
triangle △(x1, x2, x3) in (X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in
the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.
A geodesic space is said to be a CAT(0) space if all geodesic triangles of

appropriate size satisfy the following comparison axiom.
CAT(0): Let △ be a geodesic triangle in X and let △ be a comparison

triangle for△. Then △ is said to satisfy the CAT(0) inequality if for all x, y ∈ △
and all comparison points x, y ∈ △, d(x, y) ≤ dE2(x, y).

If x, y1, y2 are points in a CAT(0) space and if y0 = (1/2)y1 ⊕ (1/2)y2, then
the CAT(0) inequality implies that

(1) d(x, y0)
2 ≤

1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 −
1

4
d(y1, y2)

2.

This is the (CN) inequality of Bruhat and Tits [2]. In fact [1], a geodesic space
is a CAT(0) space if and only if it satisfies the (CN) inequality.

The following results and methods deal with the concept of asymptotic cen-
ters. Let E be a nonempty closed convex subset of a CAT(0) space X and
{xn} be a bounded sequence in X. For x ∈ X, define the asymptotic radius of
{xn} at x as the number

r(x, {xn}) = lim sup
n→∞

d(xn, x).

Let

r ≡ r(E, {xn}) := inf {r(x, {xn}) : x ∈ E}

and

A ≡ A(E, {xn}) := {x ∈ E : r(x, {xn}) = r} .

The number r and the set A are, respectively, called the asymptotic radius and
asymptotic center of {xn} relative to E.
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It is easy to know that if X is complete CAT(0) spaces and E is a closed
convex subset of X , then A(E, {xn}) consists of exactly one point. A sequence
{xn} in CAT(0) space X is said to be △-convergent to x ∈ X if x is the unique
asymptotic center of every subsequence of {xn}. A bounded sequence {xn} is
said to be regular with respect to E if for every subsequence {x′

n}, we get

r(E, {xn}) = r(E, {x′

n}).

We now give the definition of △-convergence.

Definition 1.1 ([7], [11]). A sequence {xn} in a CAT(0) space X is said
to △-converge to x ∈ X is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case we write △-limn xn = x and call x the
△-limit of {xn}.

We now collect some elementary facts about CAT(0) spaces which will be
used in the proofs of our main results. The following lemma can be found in
([3], [4], [7]).

Lemma 1.2 ([7]). Every bounded sequence in a complete CAT(0) space has a

△-convergent subsequence.

Lemma 1.3 ([3]). If E is a closed convex subset of a complete CAT(0) space

and if {xn} is a bounded sequence in E, then the asymptotic center of {xn} is

in E.

Lemma 1.4 ([4]). Let (X, d) be a CAT(0) space.
(i) [Lemma 2.1(iv)] For x, y ∈ X and u ∈ [0, 1], there exists a unique point

z ∈ [x, y] such that

d(x, z) = ud(x, y) and d(y, z) = (1− u)d(x, y).

We use the notation (1− u)x⊕ ty for the unique point z satisfying (1).
(ii) [Lemma 2.4] For x, y, z ∈ X and u ∈ [0, 1], we have

d((1− u)x⊕ uy, z) ≤ (1− u)d(x, z) + ud(y, z).

A mapping t : E → E is called asymptotically nonexpansive if there is a
sequence {kn} of positive numbers with the property limn→∞ kn = 1 such that

d(tnx, tny) ≤ knd(x, y) for all n ≥ 1, x, y ∈ E.

We say that I − T is strongly demiclosed if for every sequence {xn} in C
which converges to x ∈ C and such that limn→∞ d(xn, T (xn)) = 0, we have
x ∈ T (x).

We note that for every continuous mapping T : C → 2C , I − T is strongly
demiclosed but the converse is not true. Notice also that if T satisfies condition
(E), then I − T is strongly demiclosed.

The existence of fixed points for asymptotically nonexpansive mappings
in CAT(0) spaces was proved by Kirk [6] as the following result.
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Theorem 1.5. Let E be a nonempty bounded closed and convex subset of a

complete CAT(0) space X and let t : E → E be asymptotically nonexpansive.

Then t has a fixed point.

Corollary 1.6 ([4]). Let E be a closed and convex subset of a complete CAT(0)
space X and let t : E → X be an asymptotically nonexpansive mapping. Let

{xn} be a bounded sequence in E such that limn→∞ d(txn, xn) = 0 and △-

limn→∞ xn = w. Then tw = w.

Lemma 1.7 ([9]). Let X be a complete CAT(0) space and let x ∈ X. Sup-

pose {αn} is a sequence in [a, b] for some a, b ∈ (0, 1) and {xn}, {yn} are se-

quences in X such that lim supn→∞
d(xn, x) ≤ r, lim supn→∞

d(yn, x) ≤ r, and
limn→∞ d((1−αn)xn⊕αnyn, x) = r for some r ≥ 0. Then limn→∞ d(xn, yn) =
0.

The following lemma can be found in [15].

Lemma 1.8. Let {an} and {bn} be two sequences of nonnegative numbers such

that

an+1 ≤ (1 + bn)an, ∀n ≥ 1.

If
∑

∞

n=1
bn converges, then limn→∞ an exists. In particular, if there is a sub-

sequence of {an} which converges to 0, then limn→∞ an = 0

2. Preliminaries

In 2009, Laokul and Panyanak [8] defined the iterative and proved the △-
converges for nonexpansive mapping in CAT(0) spaces as follows:

Let C be a nonempty closed convex subset of a complete CAT(0) space and
t : C → C be a nonexpansive mapping with Fix(t) := {x ∈ C : tx = x} 6= ∅.
Suppose {xn} is generated iteratively by x1 ∈ C,

xn+1 = αnt[βntxn ⊕ (1− βn)xn]⊕ (1− αn)xn

for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1] such that one
of the following two conditions is satisfied:

(i) αn ∈ [a, b] and βn ∈ [0, b] for some a, b with 0 < a ≤ b < 1,
(ii) αn ∈ [a, 1] and βn ∈ [a, b] for some a, b with 0 < a ≤ b < 1.
Then the sequence {xn} △-converges to a fixed point of t.
In 2010, Sokhuma and Kaewkhao [14] proved the convergence theorem for

a common fixed point in Banach spaces as follow:
Let E be a nonempty compact convex subset of a uniformly convex Banach

space X , and t : E → E and T : E → KC(E) be a single valued nonexpansive
mapping and a multivalued nonexpansive mapping, respectively. Assume in
addition that Fix(t) ∩ Fix(T ) 6= ∅ and Tw = {w} for all w ∈ Fix(t) ∩ Fix(T ).
Suppose {xn} is generated iterative by x1 ∈ E,

yn = (1− βn)xn + βnzn,

xn+1 = (1− αn)xn + αntyn
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for all ∈ N where zn ∈ Txn and {αn}, {βn} are sequences of positive numbers
satisfying 0 < a ≤ αn, βn ≤ b < 1. Then the sequence {xn} converges strongly
to a common fixed point of t and T .

In 2013, Sokhuma [13] proved the convergence theorem for a common fixed
point in CAT(0) as follow:

Let E be a nonempty compact convex subset of a complete CAT(0) space
X , and t : E → E and T : E → FC(E) a single valued nonexpansive mapping
and a multivalued nonexpansive mapping, respectively, and Fix(t)∩Fix(T ) 6= ∅
satisfying Tw = {w} for all w ∈ Fix(t)∩Fix(T ). Let {xn} is generated iterative
by x1 ∈ E,

yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)xn ⊕ αntyn

for all ∈ N where zn ∈ Txn and {αn}, {βn} are sequences of positive numbers
satisfying 0 < a ≤ αn, βn ≤ b < 1. Then the sequence {xn} converges strongly
to a common fixed point of t and T .

In 2013, Laowang and Panyanak obtained the following.

Corollary 2.1 ([10]). Let C be a nonempty bounded closed convex subset of

a complete CAT(0) spaces X. Let f : C → C be a pointwise asymptotically

nonexpansive mapping, and g : C → C a quasi-nonexpansive mapping, and let

T : C → KC(C) be a multivalued mapping satisfying conditions (E) and Cλ

for some λ ∈ (0, 1). If f, g and T are pairwise commuting, then there exists a

point z ∈ C such that z = f(z) = g(z) ∈ T (z).

The purpose of this paper is to study the iterative process, called the mod-
ified Ishikawa iteration method with respect to a pair of single valued asymp-
totically nonexpansive mapping and a multivalued nonexpansive mapping. We
also establish the △-convergence theorem of a sequence from such process in a
nonempty bounded closed convex subset of a complete CAT(0) space.

Now, we introduce an iteration method modifying the above ones and call
it the modified Ishikawa iteration method.

Definition 2.2. Let E be a nonempty bounded closed convex subset of a com-
plete CAT(0) space X , t : E → E be a single valued asymptotically nonexpan-
sive mapping, and T : E → FB(E) be a multivalued nonexpansive mapping.
The sequence {xn} of the modified Ishikawa iteration is defined by

(2)
yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)xn ⊕ αnt
nyn,

where zn ∈ T tnxn and {αn}, {βn} ∈ [0, 1], n ≥ 1.

3. Main results

We first prove the following lemmas, which play very important roles in this
section.
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Lemma 3.1. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1
(kn − 1) < ∞. Let {xn} be the sequence of

the modified Ishikawa iterates defined by (2). Then limn→∞ d(xn, w) exists for

all w ∈ Fix(t) ∩ Fix(T ).

Proof. Let x1 ∈ E and w ∈ Fix(t) ∩ Fix(T ), we have

d(xn+1, w)

= d((1 − αn)xn ⊕ αnt
nyn, w))

≤ (1− αn)d(xn, w) + αnd(t
nyn, t

nw)

≤ (1− αn)d(xn, w) + αnknd(yn, w)

= (1− αn)d(xn, w) + αnd((1− βn)xn ⊕ βnzn, w)

≤ (1− αn)d(xn, w) + αnkn(1− βn)d(xn, w) + αnknβnd(zn, w)

= (1− αn)d(xn, w) + αnkn(1− βn)d(xn, w) + αnknβndist(T t
nxn, w)

≤ (1− αn)d(xn, w) + αnkn(1− βn)d(xn, w) + αnknβnH(T tnxn, Tw)

≤ (1− αn)d(xn, w) + αnkn(1− βn)d(xn, w) + αnknβnd(t
nxn, w)

≤ (1− αn)d(xn, w) + αnkn(1− βn)d(xn, w) + αnβnk
2
nd(xn, w)

= [1 + αn(kn − 1) + αnβnkn(kn − 1)]d(xn, w)

= [1 + αn(1 + βnkn)(kn − 1)]d(xn, w).

By the convergence of kn and αn, βn ∈ (0, 1), then there exists some M > 0
such that

d(xn+1, w) ≤ [1 +M(kn − 1)]d(xn, w).

By condition
∑

∞

n=1
(kn − 1) < ∞ and Lemma 1.8, we know that limn→∞ d(xn,

w) exists. �

Lemma 3.2. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1
(kn − 1) < ∞. Let {xn} be the sequence of

the modified Ishikawa iterates defined by (2). Then limn→∞ d(tnyn, xn) = 0.

Proof. From Lemma 3.1, we setting limn→∞ d(xn, w) = c.
Consider,

d(tyn, w) ≤ d(yn, w)

= d((1 − βn)xn ⊕ βnzn, w)

≤ (1− βn)d(xn, w) + βnd(zn, w)
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= (1− βn)d(xn, w) + βndist(T t
nxn, w)

≤ (1− βn)d(xn, w) + βnH(T tnxn, Tw)

≤ (1− βn)d(xn, w) + βnd(t
nxn, w)

≤ (1− βn)d(xn, w) + βnknd(xn, w).

We have

d(tnyn, w) ≤ knd(yn, w)

≤ kn[(1− βn)d(xn, w) + βnknd(xn, w)]

= kn(1− βn)d(xn, w) + βnk
2
nd(xn, w)

= (kn − knβn + βnk
2
n)d(xn, w)

= [kn + βnkn(kn − 1)]d(xn, w)

≤ [1 + βnkn(kn − 1)]d(xn, w).

Then we have,

lim sup
n→∞

d(tnyn, w) ≤ lim sup
n→∞

knd(yn, w)

≤ lim sup
n→∞

[1 + βnkn(kn − 1)]d(xn, w).

By kn → 1 as n → ∞ and αn, βn ∈ (0, 1), which implies that

(3) lim sup
n→∞

d(tnyn, w) ≤ lim sup
n→∞

d(yn, w) ≤ lim sup
n→∞

d(xn, w) = c.

Since, c = limn→∞ d(xn+1, w) = limn→∞ d((1− αn)xn ⊕ αnt
nyn, w).

Then by condition of αn and Lemma 1.7, we have limn→∞ d(tnyn, xn) =
0. �

Lemma 3.3. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1
(kn − 1) < ∞. Let {xn} be the sequence of

the modified Ishikawa iterates defined by (2). Then limn→∞ d(xn, zn) = 0.

Proof. Consider,

d(xn+1, w) = d((1 − αn)xn ⊕ αnt
nyn, w)

≤ (1 − αn)d(xn, w) + αnd(t
nyn, w)

≤ (1 − αn)d(xn, w) + αnknd(yn, w)

and hence

d(xn+1, w) − d(xn, w)

αn

≤ knd(yn, w)− d(xn, w).
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Therefore, since 0 < a ≤ αn ≤ b < 1,
(

d(xn+1, w) − d(xn, w)

αn

)

+ d(xn, w) ≤ knd(yn, w).

Thus,

lim inf
n→∞

{(

d(xn+1, w) − d(xn, w)

αn

)

+ d(xn, w)

}

≤ lim inf
n→∞

knd(yn, w).

It follows that

c ≤ lim inf
n→∞

d(yn, w).

Since, from (3), lim supn→∞
d(yn, w) ≤ c, we have

c = lim
n→∞

d(yn, w) = lim
n→∞

d((1− βn)xn ⊕ βnzn, w).

Recall that

d(zn, w) = dist(zn, Tw) ≤ H(T tnxn, Tw) ≤ d(tnxn, w) ≤ knd(xn, w).

Hence we have

lim sup
n→∞

d(zn, w) ≤ lim sup
n→∞

knd(xn, w) ≤ lim sup
n→∞

d(xn, w) = c.

Thus,

lim
n→∞

d(xn, zn) = 0.
�

Lemma 3.4. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1
(kn − 1) < ∞. Let {xn} be the sequence of

the modified Ishikawa iterates defined by (2). Then limn→∞ d(tnxn, xn) = 0.

Proof. It is easy to see that, d(tnxn, xn) ≤ knβnd(zn, xn) + d(tnyn, xn). Then,
we have

lim
n→∞

d(tnxn, xn) ≤ lim
n→∞

knβn)d(zn, xn) + lim
n→∞

d(tnyn, xn).

Hence, by Lemma 3.2 and Lemma 3.3, limn→∞ d(tnxn, xn) = 0. �

Lemma 3.5. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1
(kn − 1) < ∞. Let {xn} be the sequence of

the modified Ishikawa iterates defined by (2). Then limn→∞ d(txn, xn) = 0.
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Proof. Consider,

d(txn, w) ≤ d(xn, t
nxn) + d(tnxn, txn)

≤ d(xn, t
nxn) + k1[d(t

n−1xn, t
n−1xn−1) + d(tn−1xn−1, xn)]

≤ d(xn, t
nxn) + k1kn−1d(xn, xn−1) + k1d(t

n−1xn−1, xn)

≤ d(xn, t
nxn) + k1kn−1αn−1d(t

n−1yn−1, xn−1)

+ k1(1−αn−1)d(xn−1, t
n−1xn−1)+k1kn−1αn−1d(yn−1, xn−1)

≤ d(xn, t
nxn) + k1kn−1αn−1d(t

n−1yn−1, xn−1)

+ k1(1−αn−1)d(xn−1, t
n−1xn−1)+k1kn−1αn−1βn−1d(yn−1, xn−1).

It follows from Lemmas 3.2-3.4, we have limn→∞ d(txn, xn) = 0. �

Theorem 3.6. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1
(kn − 1) < ∞. Let {xn} be the sequence

of the modified Ishikawa iterates defined by (2). Then {xn} △-converges to y
implies y ∈ Fix(t) ∩ Fix(T ).

Proof. Since that {xn} △-converges to y. From Lemma 3.5, we have

lim
n→∞

d(txn, xn) = 0.

By Corollary 1.6, we have y ∈ E and ty = y ; that is y ∈ Fix(t). From Lemma
3.3 we have

dist(y, T y) ≤ d(y, xn) + dist(xn, T xn) +H(Txn, T y)

≤ d(y, xn) + d(xn, zn) + d(xn, y) → 0

as n → ∞. It follows that y ∈ Fix(T ). Therefore y ∈ Fix(t) ∩ Fix(T ) as
desired. �

Theorem 3.7. Let E be a nonempty bounded closed convex subset of a complete

CAT(0) space X, t : E → E and T : E → FB(E) an asymptotically nonexpan-

sive mapping and a multivalued nonexpansive mapping, respectively, Assume

that t and T are commuting and Fix(t) ∩ Fix(T ) 6= ∅ satisfying Tw = {w} for

all w ∈ Fix(t) ∩ Fix(T ) and
∑

∞

n=1 (kn − 1) < ∞. Let {xn} be the sequence

of the modified Ishikawa iterates defined by (2). Then {xn} △-converges to a

common fixed point of t and T .

Proof. Since Lemma 3.5 guarantees that {un} is bounded and limn→∞ d(txn,
xn) = 0. We now let ωw(xn) := ∪A({un}) where the union is taken over
all subsequences {un} of {xn}. We claim that ωw(xn) ⊂ Fix(t) ∩ Fix(T ),
then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By
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Lemma 1.2 and Lemma 1.3 there exists a subsequence {vn} of {un} such that
△− limn→∞ vn = v ∈ E. Since limn→∞ d(tvn, vn) = 0, then v ∈ Fix(T ). Since,

dist(v, T v) ≤ dist(v, T vn) +H(Tvn, T v)

≤ d(v, zn) + d(vn, v)

≤ d(v, vn) + d(vn, zn) + d(vn, v) → 0

as n → ∞. It follows that v ∈ Fix(T ). Therefore v ∈ Fix(t)∩Fix(T ) as desired.
We claim that u = v. Suppose not, since t is asymptotically nonexpansive
mapping and v ∈ Fix(t)∩Fix(T ), limn→∞ d(xn, v) exists by Lemma 3.1. Then
by the uniqueness of asymptotic centers,

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u) ≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v) = lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v)

a contradiction, and hence u = v ∈ Fix(t) ∩ Fix(T ).
To show that {xn} △-converges to a common fixed point, it suffices to show

that ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn}.
By Lemma 1.2 and Lemma 1.3 there exists a subsequence {vn} of {un} such
that △-limn→∞ vn = v ∈ E. Let A({un}) = {u} and A({xn}) = {x}. We
have seen that u = v and v ∈ Fix(t) ∩ Fix(T ). We can complete the proof by
showing that x = v. Suppose not, since {d(xn, v)} is convergent, then by the
uniqueness of asymptotic centers,

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v)

a contradiction, and hence the conclusion follows. �

Now we present an example to illustrate Theorem 3.7.

Example 3.8. Let E = [−2, 2] with the usual metric. Define t : E → E and
T : E → FB(E) by:

tx =
x

4
and Tx =

{ [

−x
2
,−x

5

]

if x ∈ [0, 2]
[

−x
5
,−x

2

]

if x ∈ [−2, 0].

Then t is an asymptotically nonexpansive mapping with constant sequence
{1} with a unique fixed point 0. It clear that T is a multivalued nonexpansive
mapping such that Fix(t) ∩ Fix(T ) = {0} 6= ∅. Also, Example 3.8 satisfies all
conditions of Theorem 3.7.

Let αn = 3

4
, βn = 1

4
for all n ≥ 1 and x1 = −2. The modified Ishikawa

iteration in Definition 2.2, we have

zn∈T tnxn=T

(

1

4

)n

xn=

[

−

(

1

4

)n
xn

5
,−

(

1

4

)n
xn

2

]

or

[

−

(

1

4

)n
xn

2
,−

(

1

4

)n
xn

5

]

.
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Let

zn =
3

4

(

−

(

1

4

)n
xn

5
−

(

1

4

)n
xn

2

)

= −

(

1

4

)n(
3

4

)(

7

10

)

xn.

We have

yn = (1− βn)xn + βnzn

=

(

3

4

)

xn +

(

1

4

)(

−

(

1

4

)n(
3

4

)(

7

10

)

xn

)

=

(

3

4

)

xn −

(

3

4

)(

1

4

)n+1(

7

10

)

xn.

Now, we have

tnyn =

(

1

4

)n
(

(

3

4

)

xn −

(

3

4

)(

1

4

)n+1 (

7

10

)

xn

)

=

(

3

4

)(

1

4

)n

xn −

(

3

4

)(

1

4

)2n+1(

7

10

)

xn

Therefore,

xn+1 = (1− αn)xn + αnt
nyn

=

(

1

4

)

xn +

(

3

4

)

(

(

3

4

)(

1

4

)n

xn −

(

3

4

)(

1

4

)2n+1(

7

10

)

xn

)

=

(

1

4

)

xn +

(

3

4

)2(

1

4

)n

xn −

(

3

4

)2(

1

4

)2n+1(

7

10

)

xn

Thus, the modified Ishikawa iteration {xn} in Definition 2.2 converges to the
common fixed point w = 0.

Table 1. Convergence of the modified Ishikawa iteration

n xn n xn

1 −2 23 −0.2085580268e− 012
2 −0.7689453125 24 −0.5213950670e− 013
3 −0.2189738857 25 −0.1303487668e− 013
4 −0.05666278408 26 −0.3258719170e− 014
5 −0.01429011410 27 −0.8146797925e− 015
...

... 28 −0.2036699481e− 015
21 −0.3336928428e− 011 29 −0.5091748702e− 016

22 −0.8342321070e− 012
...

...
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