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Fixed Point Theorems
for Multivalued Mappings in Banach Spaces

JoNG Soox BAg AND MYoOUNG S00X PARK

ABSTRACT. Let K be a nonempty weakly compact convex
subset of a Banach space X and T': K — C(X) a nonexpan-
sive mapping satisfying Pp(z) Nclik(z) # 8. We first show
that if I — T is semiconvex type then T has a fixed point. Also
we obtain the same result without the condition that I — T
is semiconvex type in a Banach space satisfying Opial’s condi-
tion. Lastly we extend the result of [5] to the case, that T is
an 1-set contraction mapping.

1. Introduction

In 1965, F.E. Browder [3] and W.A. Kirk [10] proved that every
nonexpansive T' from a weakly compact convex subset K of a uni-
formly convex Banach space X into K has a fixed point (one may see
Goebel and Reich [9] for more references related our subject). Later,
T.C. Lim [13] extended this result for the case that 7' is multival-
ued and K. Deimling [6] proved the same result for the case that T
is a condensing inward mapping. Furthermore, in {5}, T.H. Chang
and C.L. Yen proved that if T is a mapping from a weakly compact
convex subset K of a Banach space X into the family of nonempty
compact subsets of X satisfying Tx C clIx(z) for each z in X where
Ig(z) ={(1- Xz +Ay;y € K, A > 0} and clIk(z) is its closure,
and if I — T is semiconvex type, that is, forall z, y in K, 0 < A <1,
u = Az + (1 — A)y we have

d(u, Tu) < ¢(max[d(z,Tz),d(y, Ty)),
where ¢ : R* — R% is nondecreasing, continuous from the right at 0

with ¢(0) = 0 (here R* is the set of nonnegative real numbers), then
T has a fixed point.
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In this paper we obtain fixed point theorems of mappings satisfying
certain inwardness conditions, which properly contains [5], [15]. Also
we obtain the same result without the condition that I — 7' is semi-
convex type in a Banach space satisfying Opial’s condition. Lastly
we extend the result of {5] to the case that T is an 1-set contraction
mapping.

Recall that for bounded sets A and B in a metric space M, we set

Hy(A, B) = sup{d(z,B); z € A}
and define the Hausdorff metric by
H(A, B) = max{Hy(A, B), H(B, A)}.

A multivalued mapping 7' : M — 2 i3 said to be a contraction
mapping if there exists a constant & € (0,1) such that H(Tz,Ty) <
kd(z,y), z, y € M and a nonexpansive mapping if H(Tz,Ty) <
d(z,y), z, y € M, where 2M is the family of all nonempty closed
subset of M and C(M) the family of nonempty compact subsets of
M,

II. Some fixed point theorems

A subset K of a Banach space X is said to be proximal if for each
z in X there exists an element k in K for which d(z,k) = d(z, K).
Obviously every compact subset of X is proximal. Therefore we can
define Pr(x) which is a subset of Tz such that for any y € Pr(z),
d(z,y) = d(z,Tz), where T is a mapping from K into C(X).

Now we state our first result.

THEOREM 1. Let K be a nonempty closed convex subset of a Ba-
nach space X. Suppose that T is a contraction mapping from K into
C(X) satisfying Pr(z)Ncllk(z) # 0, for all z € K. Then T has a
fixed point in K.

The key to our approach in proving Theorem 1 is an application of
the following lemma.
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LEMMA 1. Let M be a complete metric space and ¢ : M — M
an arbitrary mapping. Suppose there exists a lower semi continuous

mapping ¢ of M into the nonnegative real numbers such that for each
TEM,

d(z,9(z)) < () — ¢(g(2))-
Then g has a fixed point in M.

The formulation of Lemma 1 came as an outgrowth of Caristi’s
study [4] of fixed point theory for the contraction mappings.

We shall also need the following lemma. An explicit proof of the
lemma is given in [4].

LEMMA 2. Let K be a convex subset of a normed linear space.
Then r —y € clIk(z) if and only if

limh~'d(z — hy, K) = 0.

PROOF OF THEOREM 1: Assuming that T has no fixed points we
may clearly suppose d(z,Tz) > 0 for each z € K. By the condition
there exists a constant k € (0,1) such that H(Tz,Ty) < kd(z,y), z,
y € K. So we can select € > 0 so that k¥ < (1 —¢)(1+¢)~!. For given
& € K we choose z € Pr(z)NeclIx(z). Then by Lemma 2 there exists
h € (0,1) such that :

(1) h7ld((1 — h)z + hz, K) < ed(z,Tz).

Writing 29 = (1 — h)z + hz, we observe that ||zg — z|| = A|z — z||.
And by (1) there exists y € K, y # z, such that

(2) |20 — y|| < hed(z, Tz)
and thus

Iz = yll/llzo0 — 2| < [z — zolf + [0 — y}i]/ {20 — 2|
=1+ |[[z0 — yl/ll20 — =l
<14 ||z0 — y||/Rd(z, Tx)
<l+e.
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Therefore
(3) (1+¢&) Mz —y|| < |lzo — x|

Combining (2), (3), and using the definition of 2q along with the fact
that 2 € Pr(z) we obtain:

d(y, Ty) < |ly — 20|l + d(20, Tz} + K|z — ¥l
= |ly — zolf + d(z,Tz) — ljz — zo|| + kijz — vl
< ||z = zo|| + d(z, Tz) ~ ||z — 2o + K[|z - ¥l
=d(z,Tz) + k||lz ~ ylf — (1 —¢)llz — 20
<d(z,Tz) + ke -yl - (L —e)(1+e) [z — |
=d(z,Tz)+ k- (1 -e)(1+€) 7 llz — gl

Letting 7 = —[k — (1 — €)(1 + €)~}], the above reduces to :
nllz —yll < d{z, Tz) — d(y, Ty)

with n > 0. We now define ¢ : K — K by taking g(z) = y with
y determinded as above, and let ¢(z) = n~'d(z,Tz). So Lemma 1
implies the existence of o € K such that zq = g(zo). But g(z) =
y # z for all z € K by definition, and our assumption that T has no
fixed points is contradicted.

Note that Theorem 1 and the following theorem properly include
Downing and Kirk [8] and Chang and Yen [5], respectively.

THEOREM 2. Let K be a nonempty weakly compact convex subset.
of a Banach space X and T : K — C(X) a nonexpansive mapping
satisfying Pp(z)NclIx(z) # B for each «, and let I —-T be semiconvex
type. Then T has a fixed point.

PrOOF: It suffices to show (see Theorem 1 in [5]) that
inf{d(z,Tz); z€ K} =0.

For given z¢ in Kand ¢ € {0,1) we define T; : K — C(X) by Tix =
(1—t)zg +tTz for all z € K. Then by Theorem 1 T; has a fixed point
z;. Hence there is a y; € Tz, such that

Xy = (1 t t)zg +ty,
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llze ~ yell < ((1 = £)/E)||ze — 2o

and

d(zy, Tze) = inf{||xe ~ yl|; y € Ty}
< e — yol| < (1 —2)/E)|we — @o].

Since the set {||z: — xo}|; 0 <t < 1} is bounded, we get

<1 < 1 < 1 — — = (.
0< jof d(z,T2) < inf d(eoTae) < inf (1= 1)/t)]z — 7ol = 0

Hence
inf{d(z,Tz); r € K} =0.

In [14] Opial observed that every uniformly convex Banach space
which possesses a weakly continuous duality mapping satisfies the
condition.

(A) H the sequence {z,} is weakly convergent to zq and if ¢ # z;
then

liminf ||z, — z|| > liminf ||z, — ze||.

We say that a Banach space satisfies Opial’s condition if it has prop-
erty (A). Such spaces include Hilbert spaces and the space £, 1 <
P < 00.

In the following theorem we obtain the same result in a Banach
space satisfying Opial’s condition in spite of deleating the condition
that I — T is semiconvex type.

THEOREM 3. Let K be a weakly compact convex subset of a Ba-
nach space X with Opial’s condition and T : K — C(X) a nonexpan-
sive mapping satisfying Pr(z)NclIx(z) # 0 for each  in K. Then
T has a fixed point.

PROOF: Let a € K. Let {A,} be a decreasing sequence of positive
numbers less then 1 and lim A, = 0. For each n, the mapping T, :
K — C(X) defined by Th(z) = Apa + (1 — An)Tz is a contraction
mapping and hence has a fixed point z,, by Theorem 1. Thus z, €
Ane + (1 = A,)Tz, and there exists a y, € Tz, with z, = A,a +
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(1 = X )ya. Since K is bounded, we have ||z, — y,|| — 0. Since K is
weakly compact, we may assume that z, converges weakly to some
element z in K. For each n, let p, € Tz be chosen such that

lyn — pall € ”xn - “"H

Since Tz is a compact subset of X, there exists a convergent sub-
sequence, say also {pp} in T'z with limp, = p € Tz. Therefore we
get

liminf ||z,, — p|| = liminf ||y, — p|| £ liminf ||z, — 2|

Hence z =p € Tx.

Let (K, d) be a complete metric space. We define the Kuratowski
measure of noncompactness as a nonnegative real valued function on
set of all bounded subsets of A such that a(D) = inf{r > 0; D is
covered by finitely many sets with diameter less than r}. It is well-
known that a(D) = 0 if and only if the closure of D is compact.

A mapping T : K — K is said to be condensing if, for each bounded
subset D of K, TD is bounded and a(TD) < o D) for all (D) # 0
where T(D) = | J,cp Tz. A mappingT: K — 2K is said to be a k-set
contraction if T is continuous and bounded, and there is a number
k > 0 such that a(T(D)) < ka(D) for all bounded subset D of K.

LEMMA 3 (K. Deimling [6]). Let K be a closed bounded convex
subset of a Banach space X and T : K — 2% a condensing and weakly
inward mapping on K (that is, Tz C clIk(z)). Then T has a fixed
point. -

Now we have the following theorem which generalizes a result of

5).

THEOREM 4. Let K be a nonempty weakly compact convex subset
of a Banach space X and let T : K — 2X be 1-set contraction satis-
fying weakly inwardness and let I — T be semiconvex type. Then T
has a fixed point.

PROOF: According to Theorem 1 in [5], it suffices to show

inf{d(z,Tz); z € K} =0.



FIXED PCINT THEOREMS FOR MULTIVALUED MAPPINGS 109

Let zy € Ka.ndforO_St-(ldeﬁneT;:K—>2x by Ti(z) =
(1 —t)zg + tTz for all « € K. Then T} is a t-set contraction with
t < 1, hence it has a fixed point z, in K. That is, there exists a
y: € Tz, such that

ze = (1 —t)zo + tye

SO
lze — e < (1 —t)|izo — wel|

and

d(z¢, Tz,) = inf {|jz; — y||; ¥ € Tz}
< e — yef
<A -t)llwo -yl

Since {zg — y; 0 < ¢ < 1} is bounded, we have

<1 < 1 < 1 - - = 0.
0< ;gf{d(m,T:c) < té[réfl)d(xt,Tmt) _té{xll]f"l)(l |zo — gl =0

Hence we complete the proof.

Note that every single valued nonexpansive mapping is 1-set con-
traction, but the multivalued nonexpansive mapping T : X — 2X
need not to be 1-set contraction unless Tx is compact. Therefore we
have the following

COROLLARY (Theorem 9 in [5]). Let K be a nonempty weakly
compact convex subset of a Banach space X and T : K — C(X)
nonexpansive satisfying Tz C clIg(z) for each z in K, and let I — T
be semiconvex type. Then T has a fixed point.
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