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Fixed Point Theorems 
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ABSTRACT. Let K be a nonempty weakly compact convex 
subset of a Banach space X and T : K f C(X) a nonexpan- 
sive mapping satisfying Pp(x) C cl Zk(®) 0. We first show 
that if I — T is semiconvex type then T has a fixed point. Also 
we obtain the same result without the condition that I — T 
is semiconvex type in a Banach space satisfying OpiaFs condi­
tion. Lastly we extend the result of [5] to the case, that T is 
an 1-set contraction mapping.

I. Introduction
In 1965, F.E. Browder [3] and W.A. Kirk [1 이 proved that every 

nonexpansive 꼬 from a weakly compact convex subset K of a uni­
formly convex Banach space X into K has a fixed point (one may see 
Goebel and Reich [9] for more references related our subject). Later, 
T.C. Lim [13] extended this result for the case that T is multival­
ued and K. Deimling [6] proved the same result for the case that T 
is a condensing inward mapping. Furthermore, in [5], T.H. Chang 
and C.L. Yen proved that if T is a mapping from a weakly compact 
convex subset K of a Banach space X into the family of nonempty 
compact subsets of X satisfying Tx C cIIk(^) for each x in K where 
Ik(^) = {(1 — X)x + 如; g C K, A > 0} and cIIk(^) is its 시osure, 
and if I — T is semiconvex type, that is, for all a:, ?/ in if, 0 < A < 1, 
u = Aa? + (1 —入)g we have

d(u, Tu) < 夕(ma，x[d(c[*),d(饥 Tg)],

where 夕:R+ t R+ is nondecreasing, continuous from the right at 0 
with 9(0) = 0 (here is the set of nonnegative real numbers), then 
T has a fixed point.
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In this paper we obtain fixed point theorems of mappings satisfying 
certain inwardness conditions, which properly contains [5], [15], Also 
we obtain the same result without the condition that I — T is semi- 
convex type in a Banach space satisfying OpiaPs condition. Lastly 
we extend the result of [5] to 난le case that T is an 1-set contraction 
mapping.

Recall that for bounded sets A and B in a metric space M, we set

B) = sup{d(:c,B)] x e A}

and define the HausdorfF metric by

B) = max{Ho(4 A)}.

A multivalued mapping T : M —> 2M is said to be a contraction 
mapping if there exists a constant k e (0,1) such that H(Tx,Tg) < 
k: d(r)g), x, y e M and a nonexpansive mapping if H(Tr)Tg) <

?/), y E Af, where 2M is the family of all nonempty closed 
subset of M and C(M) the family of nonempty compact subsets of 
M.

II. Some fixed point theorems

A subset K of a Banach space X is said to be proximal if for each 
z in X there exists an element k in K for which d(的 k、) = K).
Obviously every compact subset of X is proximal. Therefore we can 
define Pt(z) which is a subset of 꼬z such that for any y € Pp(a:), 

끄:e), where 꼬 is a mapping from K into C(X).
Now we state our first result.

THEOREM 1. Let K be a nonempty closed convex subset of a Ba­
nach space X. Suppose that T is a contraction mapping from K into 
C(X) satisfyingA cI Ik(^)丰 0, for all x E K. Then T has a 
fixed point in K・

The key to our approach in proving Theorem 1 is an application of 
the following lemma.
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LEMMA 1. Let M be a complete metric space and g : M M 
an arbitrary mapping. Suppose there exists a lower semi continuous 
mapping of M into the nonnegative real numbers such that for each 
x €

d(Gg(c)) < 夕(％) 一 夕(g，3)).

Then g has a fixed point in M.

The formulation of Lemma 1 came as an outgrowth of Caristi's 
study [4] of fixed point theory for the contraction mappings.

We shall also need the following lemma. An explicit proof of the 
lemma is given in [4].

LEMMA 2. Let K be a convex subset of a normed linear space. 
Then x — y E c1/k(z) if and only if

lim iL d(工—h，g)K) = 0.

PROOF of Theorem 1: Assuming that T has no fixed points we 
may clearly suppose d(x^Tx) > 0 for each x E K. By the condition 
there exists a constant k G (0,1) such that H(Tx^Ty) < k; d(必 
y £ K. So we can select 6 > 0 so that E V (1 — s)(l + 功~」.For given 
x E K we choose z W Then by Lemma 2 there exists
h 6 (0,1) such that ，

(1) — h)x + hz. K) < M(奶 7以).

Writing 如 = (1 — h)x + 膈, we observe that \\zq — x\\ = 이|z — 꾀" 
And by (1) there exists g C K)g 手叭 such that

⑵ Iko 一 训 < hed(吗 Tx)

and thus

|g - 训세Zo - 께 < [\\x 一 치I + ||如 一 y\\]/\\zQ 一 끼

= 1 + \\zq 一 训세如 一 께

< 1 + 11% - y\\/hd(x,Tx)
V 1 + £.
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Therefore

(3) (l + &)T|g-g|| v ||zo — 께.

Combining (2), (3), and using the definition of z° along with the fact 
that z € Pt(花)we obtain:

d«hTg) < 他 一 씨| + d(zo,꼬z) + 시|z — g||
= \\y - zo|| + d(c/rz) — ||z — zo|| + 시g — y||
< 히一 约|| + d(x, Tx) 一 |pr — 끼I + 시|z 一 训

= + 이 g — y|| — (1 — e)||x — zo||
V d(x, Tx) + 시伊 一 训 一 (1 一 e)(l + e)T |伊 一 y\\
= 以奶꼬0 + 住 一 (1 一 £)(1 + ey^Wx 一 y\\.

Letting rj = —[k — (1 — €)(1 + e)-1], the above reduces to :

이g — y|| < d(吗 꼬a:) — d(g, 꼬g)

with 77 > 0. We now define g : K —> K by taking g(x) = y with 
y determinded as above, and let 夕(z) = 勺一亳化,꼬z)・ So Lemma 1 
implies the existence oi xq E K such that xq = 戒割).But g(花)= 
y x for all x e K by definition, and our assumption that 끄 has no 
fixed points is contradicted.

Note that Theorem 1 and the following theorem properly include 
Downing and Kirk [8] and Chang and Yen [5], respectively.

THEOREM 2. Let K be a nonempty weakly compact convex subset 
of a Banach space X and T : K C(X) a nonexpansive mapping 
satisfying Pr(^)nclI/<(^) / 0 for each x, and let I—T be semiconvex 
type. Then T has a fixed point.

Proof： It suffices to show (see Theorem 1 in [5]) that

inf {d(x,Tx); x 6 K} = 0.

For given xq in Kand t € [0,1) we define 7； : K t C(X) by TfX = 
(1 一 t)x()+tTx for all x e K. Then by Theorem 1 Tt has a fixed point 
xt. Hence there is a j/t € Txt such that

叭=(1 一 t)xQ + tyt
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SO
腿 一 yt\\ < ((1 一 £)")|岡 一 Wl

and

J*;。= inf{||a：t 一 g||; g £ Txt}
< II如 一 ?시| < ((1 一 t)/圳岡 一 如 ||・

Since the set {|gt — ^o|| ； 0 < i < 1} is bounded, we get

0 < 垩％d(琼*) < inf ^d(xt^Txt) < inf)((1 — t)/Z)|岡—如|| = 0.

Hence
inf{d(x, Tx); x 6 K} = 0.

In [14] Opial observed that every uniformly convex Banach space 
which possesses a weakly continuous duality mapping satisfies the 
condition.

(A) If the sequence {xn} is weakly convergent to xq and ii x xq 
then

liminf ||xn — 끼 > liminf |gn — ⑦o||・

We say that a Banach space satisfies Opiafs condition if it has prop­
erty (A). Such spaces include Hilbert spaces and the space 僕，1 V 
p < oo.

In the following theorem we obtain the same result in a Banach 
space satisfying OpiaFs condition in spite of deleating the condition 
that I — T is semiconvex type.

THEOREM 3. Let K be a weakly compact convex subset of a Ba­
nach space X with Opial's condition and T : K C(X) a nonexpan- 
sive mapping satisfying Pt(x) n cIIk(^) 丰 0 for each x in K. Then 
꼬 has a fixed point.

PROOF: Let a E K. Let (An} be a decreasing sequence of positive 
numbers less then 1 and lim An = 0. For each n, the mapping Tn : 
K t C(X) defined by Tn(x) = Xna + (1 — An)Ta; is a contraction 
mapping and hence has a fixed point xn by Theorem 1. Thus xn € 
Xna + (1 — 入”)꼬:and there exists a yn G Txn with xn = Xna +



108 JONG SOOK BAE AND MYUNG SOOK PARK

(1 — An)yn. Since K is bounded, we have ^xn — yn|| —> 0. Since K is 
weakly compact, we may assume that xn converges weakly to some 
element x in K. For each n, let pn E Tx be chosen such that

\\yn -p시I < Ikn 一 께.

Since Tx is a compact subset of X, there exists a convergent sub­
sequence, say also {pn} in 꼬z with limpn = p E Tx. Therefore we 
get

liminf ||zn —p|| = liminf ||j/n -p|| < liminf |鬲 - 께.

Hence x = p E 꼬⑦.

Let (K, d) be a complete metric space. We define the Kuratowski 
measure of noncompactness as a nonnegative real valued function on 
set of all bounded subsets of K such that a(ZJ) = inf{r > 0; JD is 
covered by finitely many sets with diameter less than r}. It is well- 
known that a(-D) = 0 if and only if the closure of D is compact.

A mapping T : K —> K is said to be condensing if, fo호 each bounded 
subset D of K, TD is bounded and < a(P) for all a(Z>)尹 0 
where T(D)=[人財> ” A mapping T : K —> 2K is said to be a fc-set 
contraction if T is continuous and bounded, and there is a number 
k >0 such that a(T(2?)) < ko(D) for all bounded subset D of K.

Lemma 3 (K. Deimling [6]). Let K be a closed bounded convex 
subset of a Banach space X and T : K —t 2* a condensing and weakly 
inward mapping on K (that is, Tx C ell/(⑦))• Then T has a fixed 
point.

Now we have the following theorem which generalizes a result of 
同.

THEOREM 4. Let K be a nonempty weakly compact convex subset 
of a Banach space X and let T : K 2X be 1-set contraction satis­
fying weakly inwardness and let I — T be semiconvex type. Then 꼬 
has a fixed point.

PROOF: According to Theorem 1 in [5], it suffices to show

inf Tx); x G K} = 0.
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Let xq E K and for 0 < f < 1 define Tt ： K t 2x by Tt(x)= 
(1 — t)xo + 坦地 for all x G K. Then Ti is a t-set contraction with 
i < 1, hence it has a fixed point xt in K. That is, there exists a 
yt G 꼬外 such that

xt = (1+tyt

so
|区 - !시I < (1 - 切岡 - 如I

and

d(xt, 꼬£t) = inf {|启 一，II ； 0 C 끄外}
<\\^t-yt\\

< (1 一 圳|zo- !시|.

Since {ar0 — t/t ； 0 < t < 1) is bounded, we have

0 < inf 飯:) ：< inf d(xt,Txt) < inf (1 - 圳|如 一 ?시| = 0. 
xeK te[o,i) te[o,i)

Hence we complete the proof.
Note that every single valued nonexpansive mapping is 1-set con­

traction, but the multivalued nonexpansive mapping T : X 2X 
need not to be 1-set contraction unless 꼬z is compact. Therefore we 
have the following

Corollary (Theorem 9 in [5]). Let K be a nonempty weakly 
compact convex subset of a Banach space X and T : K —> C(X) 
nonexpansive satisfying 꼬z C cl 1「k(£)each x in K, and let I — T 
be semiconvex type. Then T has a fixed point.
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