• Title/Summary/Keyword: Multispectral imaging

Search Result 49, Processing Time 0.036 seconds

Aerosol Optical Thickness Retrieval Using a Small Satellite

  • Wong, Man Sing;Lee, Kwon-Ho;Nichol, Janet;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • This study demonstrates the feasibility of small satellite, namely PROBA platform with the compact high resolution imaging spectrometer (CHRIS), for aerosol retrieval in Hong Kong. The rationale of our technique is to estimate the aerosol reflectances by decomposing the Top of Atmosphere (TOA) reflectances from surface reflectance and Rayleigh path reflectances. For the determination of surface reflectances, the modified Minimum Reflectance Technique (MRT) is used on three winter ortho-rectified CHRIS images: Dec-18-2005, Feb-07-2006, Nov-09-2006. For validation purpose, MRT image was compared with ground based multispectral radiometer measurements and atmospherically corrected Landsat image. Results show good agreements between CHRIS-derived surface reflectance and both by ground measurement data as well as by Landsat image (r>0.84). The Root-Mean-Square Errors (RMSE) at 485, 551 and 660nm are 0.99%, 1.19%, and 1.53%, respectively. For aerosol retrieval, Look Up Tables (LUT) which are aerosol reflectances as a function of various AOT values were calculated by SBDART code with AERONET inversion products. The CHRIS derived Aerosol Optical Thickness (AOT) images were then validated with AERONET sunphotometer measurements and the differences are 0.05~0.11 (error=10~18%) at 440nm wavelength. The errors are relatively small compared to those from the operational moderate resolution imaging spectroradiometer (MODIS) Deep Blue algorithm (within 30%) and MODIS ocean algorithm (within 20%).

Derivation of Surface Temperature from KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.343-353
    • /
    • 2022
  • An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments - the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) - continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 ㎛ for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3Asensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water,sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 ㎛) and longwave (5-50 ㎛) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.

Effect Analysis of Worldview-3 SWIR Bands for Wetland Classification in Suncheon Bay, South Korea

  • Han, Youkyung;Jung, Sejung;Park, Honglyun;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.371-379
    • /
    • 2018
  • Unlike general VHR (Very-High-Resolution) satellite sensors that are mainly for panchromatic and MS (Multispectral) imaging, Worldview-3 sensor additionally provides eight SWIR (Short Wavelength Infrared) bands in wavelength range from 1198 nm to 2365 nm. This study investigates the effect of informative Worldview-3 SWIR bands for wetland classification performance. Worldview-3 imagery acquired over Sunchon Bay, which is a coastal wetland located in South Korea, is used to implement the classification. Land-cover classes for the scene are determined by referring to national land-cover maps, which are provided by the Ministry of Environment, overlapped with the scene. After that, training data for each determined class are collected. In order to analyze the effect of SWIR bands, classifications with and without SWIR bands are carried out and the results are then compared. In this regard, a SVM (Support Vector Machine) is utilized as their classifier. As a result of the accuracy assessments performed by test data that are independently extracted from training data, it was confirmed that classification performance was improved when the SWIR bands are included as input features for SVM-based classification.

Merging of KOMPSAT-1 EOC Image and MODIS Images to Survey Reclaimed Land

  • Ahn, Ki-Won;Shin, Seok-Hyo;Kim, Sang-Cheol;Seo, Doo-Chun
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 2003
  • The merging of different scales or multi-sensor image data is becoming a widely used procedure of the complementary nature of various data sets. Ideally, the merging method should not distort the characteristics of the high-spatial and high-spectral resolution data used. To present an effective merging method for survey of reclaimed land using the high-resolution (6.6 m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSA T-l) and the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data, this paper compares the results of Intensity Hue Saturation (IHS) and Principal Component Analysis (PCA) methods. The comparison is made by statistical and visual evaluation of three-color combination images of IHS and PCA results based on spatial and spectral characteristics. The use of MODIS bands 1, 2, and 3 with a contrast stretched EOC panchromatic image as a substitute for intensity was found to be particularly effective in this study.

  • PDF

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

Monitoring urban growth in Metro Manila using multitemporal satellite images

  • Vinluan, Randy John N.;Quiblat, Carla;Batadlan, Beata;Asilo, Sonia;Sontillanosa, Rosalyn;Pereira, Rosalyn;Macapinlac, Oliver;Menguito, Mon Pierre
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.378-380
    • /
    • 2003
  • One of the most common forms of land use change is urbanization. Fortunately, the temporal revisit capacity of remote sensing satellites and their multispectral imaging capability make it possible to monitor this process. Using two Landsat images taken in 1972 and 1989, and one SPOT image taken in 2000, urban growth in Metro Manila is monitored. The extent of urbanization in Metro Manila increased from about 39 percent in 1972 to about 74 percent in 2000, although a slowing of growth was observed in the last decade due to decreasing areas for development. Most cities and municipalities in Metro Manila exhibited urban growth rates higher than the metropolitan average. The drivers and environmental consequences of urban growth were determined as well as the relationship of the extent of urbanization with some socio-economic and environmental variables.

  • PDF

Fusion Techniques Comparison of GeoEye-1 Imagery

  • Kim, Yong-Hyun;Kim, Yong-Il;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.517-529
    • /
    • 2009
  • Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.

Analysis of Soil Moisture-Vegetation-Carbon Flux Relationship at Agricultural Drought Status using Optical Multispectral Sensor (다중분광센서를 활용한 농업적 가뭄 발생 시 토양수분-식생-탄소플럭스의 관계성 분석)

  • Sur, Chanyang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.278-278
    • /
    • 2021
  • 가뭄이 장기간 지속되어 농업적 가뭄 상태가 되면 토양의 수분이 마르기 시작하면서, 식생의 생장활동이 방해되고, 이는 식생의 광합성 활동까지 영향을 미친다. 광합성을 통해 대기 중의 이산화탄소가 흡수되고 산소 발생이 증가하는데, 광합성이 활발하지 못하면 상대적으로 대기 중의 이산화탄소 농도가 증가한다. 본 연구에서는 이러한 토양수분, 식생활동과 대기 중 이산화탄소의 농도의 관계를 다중분광센서인 MODerate resolution Imaging Spectroradiometer (MODIS) 산출물을 이용하여 분석하였다. 기존 토양수분의 경우, 마이크로파 센서를 통해 산출된 값을 활용했지만, 이는 상대적으로 공간 해상도가 조악하다는 단점을 갖고 있어서 면적이 작은 연구지역을 분석할 때에는 한계점을 갖고 있다. 이러한 문제를 해결하기 위하여 상대적으로 고해상도인 광학센서를 이용한 토양수분 산정 방법을 적용하였다. 또한, MODIS 총 일차생산량 (Gross Primary Productivity, GPP) 산출물을 이용하여 식생 호흡량과의 관계식을 통해 이산화탄소 플럭스를 계산하였다. 원격탐사 기반의 토양수분, 식생지수, 이산화탄소 플럭스를 한국에서 발생한 가뭄 기간 중, 2014년과 2015년도에 대하여 지점 관측자료인 플럭스 타워에서 제공되는 값과 비교 분석하였다. 분석한 결과 토양수분, 식생 지수, 탄소플럭스는 순차적으로 지연시간을 두고 상관성이 발생함을 확인하였다. 토양수분과 식생 지수 사이에는 1개월, 식생지수와 탄소플럭스는 0.5개월의 지연시간 후에 가장 높은 상관성을 보였다.

  • PDF

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing (육상 원격탐사에서 광학영상의 대기보정)

  • Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1299-1312
    • /
    • 2019
  • As land remote sensing applications are expanding to the extraction of quantitative information, the importance of atmospheric correction is increasing. Considering the difficulty of atmospheric correction for land images, it should be applied when it is necessary. The quantitative information extraction and time-series analysis on biophysical variables in land surfaces are two major applications that need atmospheric correction. Atmospheric aerosol content and column water vapor, which are very dynamic in spatial and temporal domain, are the most influential elements and obstacles in retrieving accurate surface reflectance. It is difficult to obtain aerosol and water vapor data that have suitable spatio-temporal scale for high- and medium-resolution multispectral imagery. Selection of atmospheric correction method should be based on the availability of appropriate aerosol and water vapor data. Most atmospheric correction of land imagery assumes the Lambertian surface, which is not the case for most natural surfaces. Further BRDF correction should be considered to remove or reduce the anisotropic effects caused by different sun and viewing angles. The atmospheric correction methods of optical imagery over land will be enhanced to meet the need of quantitative remote sensing. Further, imaging sensor system may include pertinent spectral bands that can help to extract atmospheric data simultaneously.