Browse > Article
http://dx.doi.org/10.7780/kjrs.2009.25.6.517

Fusion Techniques Comparison of GeoEye-1 Imagery  

Kim, Yong-Hyun (Satellite Data application Department, Satellite Information Research Institute, Korea Aerospace Research Institute)
Kim, Yong-Il (Department of Civil and Environmental Engineering, Seoul National University)
Kim, Youn-Soo (Satellite Data application Department, Satellite Information Research Institute, Korea Aerospace Research Institute)
Publication Information
Korean Journal of Remote Sensing / v.25, no.6, 2009 , pp. 517-529 More about this Journal
Abstract
Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.
Keywords
Image fusion; Comparative analysis; GeoEye-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Garzelli, A. and F. Nencini, 2005. Interband structure modeling for pan-sharpening of very highresolution multispectral images, Information Fusion, 6: 213-224   DOI   ScienceOn
2 Laben, C. A. and B.V. Brower, Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. U.S. Patent 6011875, Jan. 4, 2000. Tech. Rep., Eastman Kodak Company
3 Mallat, S., 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7): 674-693   DOI   ScienceOn
4 Nunez, J., X. Otzau, O. Fors, A. Prades, V. Pala, R. Arbiol, 1999. Multiresolution-based image fusion with additive wavelet decomposition, IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1204-1211   DOI   ScienceOn
5 Pohl, C. and J. L. Van Genderen, 1998. Multisensor image fusion in remote sensing: Concepts, methods and applications, International Journal of Remote Sensing, 19(5): 823-854   DOI
6 Svab, A. and K. Ostir, 2006. High-resolution image fusion: methods to preserve spectral and spatial resolution, Photogrammetric Engineering and Remote Sensing, 72(5): 565-572   DOI
7 Wang, A., D. Ziou, C. Armenakis, D. Li, and Q. Li, 2005. A comparative analysis of image fusion methods, IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1391-1402   DOI   ScienceOn
8 Ling, Y., M. Ehlers, E. L. Usery, and M. Madden, 2007. FFT-enhaced IHS transform method for fusing high-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 61: 381-392   DOI   ScienceOn
9 Murtagh, F. and J.L. Starck, 2000. Image processing through multiscale analysis and measurement noise modeling, Statistics and Computing, 10(2): 95-103   DOI
10 Aanæs, H., J.R. Sveinsson, A.A. Nielsen, 2008. Model-based satellite image fusion, IEEE Transactions on Geoscience and Remote Sensing, 46(5): 1336-1346   DOI   ScienceOn
11 Dou, W., Y. Chen, X. Li, D.Z. Sui, 2007. A general framework for component substitution image fusion: An implementation using the fast image fusion method, Computer & Geosciences, 33(2): 219-228   DOI   ScienceOn
12 Ranchin, T. and L. Wald, 2000. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation, Photogrammetric Engineering and Remote Sensing, 66(1): 49-61
13 Nikolakopoulos, K. G., 2008. Comparison of nine fusion techniques for very high resolution data, Photogrammetric Engineering and Remote Sensing, 74(5): 647-659   DOI
14 Shensa, M. J., 1992. The discrete wavelet transform: wedding the a trous and Mallat algorithm, IEEE Transactions on Signal Processing, 40(10): 2464-2482.   DOI   ScienceOn
15 Wald, L., 1999. Some terms of reference in data fusion, IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1190-1193   DOI   ScienceOn
16 Tu, T. M., W. C. Cheng, C. P. Chang, P. S. Huang, and J. C. Chang, 2007. Best tradeoff for highresolution image fusion to preserve spatial details and minimize color distortion, IEEE Transactions on Geoscience and Remote Sensing Letters, 4(2): 302-306   DOI   ScienceOn
17 Zhang, Y., 2004. Understanding image fusion, Photogrammetric Engineering and Remote Sensing, 70(6): 657-661
18 Aiazzi, B., S. Baronti, M. Selva, 2007. Improving component substitution pansharpening through multivariate regression of ms+pan data, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3230-3239   DOI   ScienceOn
19 Gonzalez-Audacana, M., X. Otazu, O. Fors, J. Alvarez-Mozos, 2006. A low computationalcost method to fuse IKONOS images using the spectral response function of its sensors, IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1683-1691   DOI   ScienceOn
20 Zhou, J., D. L. Civco, and J. A. Silander, 1998. A wavelet transform method to merge Landsat TM and SPOT panchromatic data, International Journal of Remote Sensing, 19(4): 743-757   DOI
21 Chavex P. S. and A. Y. Kwarteng, 1989. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis, Photogrammetric Engineering and Remote Sensing, 55(3): 339-348
22 Chu, H. and W. Zhu, 2008. Fusion of IKONOS satellite imagery using IHS transform and local variation, IEEE Transactions on Geoscience and Remote Sensing Letters, 5(4): 653-657   DOI   ScienceOn
23 Dutilleux, P. 1989. An implementation of the algorithms a trous to compute the wavelet transform, in wavelets: time-frequency methods and phase space. J. M. Cobbes, A. Grossman. and Ph. Tchamitchian, Eds. Berlin, Germany: Springer-Verlag, 298-304
24 Zhang, Y. and G. Hong, 2005. An IHS and wavelet integrated approach to improve pansharpening visual quality of natural colour IKONOS and QuickBird images, Information Fusion, 6: 225-234   DOI   ScienceOn
25 Aiazzi, B., L. Alparone, S. Baronti, A. Garzelli, M. Selva, 2006. MTF-tailored multiscale fusion of high-resolution ms and pan imagery, Photogrammetric Engineering and Remote Sensing, 72(5): 591-596   DOI
26 Thomas, C., T. Ranchin, L. Wald, and J. Chanussot, 2008. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics, IEEE Transactions on Geoscience and Remote Sensing, 46(5): 1301-1312   DOI   ScienceOn
27 Alparone, L., S. Baronti, A. Garzelli, F. Nencini, 2004. A global quality measurement of pansharpened multispectral imagery, IEEE Transactions on Geoscience and Remote Sensing Letters, 1(4): 313-317   DOI   ScienceOn
28 Filippidis, A., L. C. Jain, and N. Martin, 2000, Multisensor data fusion for surface land-mine detection, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 30(1): 145-150   DOI   ScienceOn
29 Kalpoma, K. and J. Kudoh, 2007. Image fusion processing for IKONOS 1m color imagery, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3075-3086   DOI   ScienceOn
30 Piella, G., 2003. A general framework for multiresolution image fusion: from pixels to regions, Information Fusion, 4: 259-280   DOI   ScienceOn
31 Otazu, X., Gonzalez-Audacana, M., O. Fors, J. Nunez, 2005. Introduction of sensor spectral response into image fusion methods, Application to wavelet-based methods, IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2376-2385   DOI   ScienceOn
32 Gonzalez-Audacana, M., J.L. Saleta, R. G. Catalan, R. Garcia, 2004, Fusion of multispectral and panchromatic images using improvement IHS and PCA mergers based on wavelet decomposition, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1291-1299   DOI   ScienceOn
33 Joshi, M. V. and L. Brunzzone, 2006. A model-based approach to multi-resolution fusion in remotely sensed images, IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2549-2562   DOI   ScienceOn
34 Khan, M. M., J. Chanussot, L. Condat, A. Montanvert, 2008. Indusion: fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Transactions on Geoscience and Remote Sensing Letters, 5(1): 98-102   DOI   ScienceOn
35 Zhang, Y., A new automatic approach for effectively fusing Landsat 7 as well as Ikonos images, Proceedings of IEEE/IGARSS'02, Toronto, Canada, 4; 2429-2431
36 Tania, S., 2008. Image fusion, Academic Press in an imprint of Elsevier, p. 51
37 Tu, T. M., P. S. Huang, C. L. Hung, and C. P. Chang, 2004. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery, IEEE Transactions on Geoscience and Remote Sensing Letters, 1(4). 309-312   DOI   ScienceOn
38 Hill, P., N. Canagarajah, D. Bull, Image fusion using complex wavelets, Proceeding of 13th British Machine Vision Conference, 2002. 487-496
39 Liu, J. G., 2000. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details, International Journal of Remote Sensing, 21(18): 3461-3472   DOI
40 Huang, P. S. and T. Te-Ming, A target fusion based approach for classifying high spatial resolution imagery, Proceeding of Workshops Advances Techniques for Analysis of Remotely Sensed Data, 2003. 175-181