Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.4.2

Derivation of Surface Temperature from KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model  

Kim, Yongseung (National Satellite Operation & Application Center, Korea Aerospace Research Institute)
Publication Information
Korean Journal of Remote Sensing / v.38, no.4, 2022 , pp. 343-353 More about this Journal
Abstract
An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments - the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) - continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 ㎛ for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3Asensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water,sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 ㎛) and longwave (5-50 ㎛) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.
Keywords
Surface temperature; Mid-wave infrared; KOMPSAT-3A; Radiative transfer model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Valor, E. and V. Caselles, 1996. Mapping land surface emissivity from NDVI: application to European, African, and South American areas, Remote Sensing of Environment, 57(3): 167-184. https://doi.org/10.1016/0034-4257(96)00039-9   DOI
2 Van de Griend, A.A. and M. Owe, 1993. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, International Journal of Remote Sensing, 14(6): 1119-1131. https://doi.org/10.1080/01431169308904400   DOI
3 Aires, F., A. Chedin, N.A. Scott, and W.B. Rossow, 2002. A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument, Journal of Applied Meteorology and Climatology, 41(2): 144-159. https://doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2   DOI
4 Becker, F. and Z.-L. Li, 1990. Towards a local split window method over land surfaces, International Journal of Remote Sensing, 11(3): 369-393. https://doi.org/10.1080/01431169008955028   DOI
5 Borel, C., 2008. Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data, International Journal of Remote Sensing, 29(17-18): 5029-5045. https://doi.org/10.1080/01431160802036540   DOI
6 Peres, L.F. and C.C. DaCamara, 2005. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI, IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1834-1844. https://doi.org/10.1109/TGRS.2005.851172   DOI
7 Li, Z.-L., B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, and J.A. Sobrino, 2013. Satellitederived land surface temperature: current status and perspectives, Remote Sensing of Environment, 131: 14-37. https://doi.org/10.1016/j.rse.2012.12.008   DOI
8 Ma, X.L., Z. Wan, C.C. Moeller, W.P. Menzel, and L.E. Gumley, 2002. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm, Applied Optics, 41(5): 909-924. https://doi.org/10.1364/AO.41.000909   DOI
9 McMillin, L.M., 1975. Estimation of sea surface temperature from two infrared window measurements with different absorptions, Journal of Geophysical Research, 80(36): 5113-5117. https://doi.org/10.1029/JC080i036p05113   DOI
10 Li, Z., F. Petitcolin, and R. Zhang, 2000. A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data, Science in China Series E: Technological Sciences, 43(1): 23-33. https://doi.org/10.1007/BF02916575   DOI
11 Qin, Z., A. Karnieli, and P. Berliner, 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, International Journal of Remote Sensing, 22(18): 3719-3746. https://doi.org/10.1080/01431160010006971   DOI
12 Sobrino, J.A., Z.-L. Li, M.P. Stoll, and F. Becker, 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data, International Journal of Remote Sensing, 17(11): 2089-2114. https://doi.org/10.1080/01431169608948760   DOI
13 Tang, B.-H. and J. Wang, 2016. A physics-based method to retrieve land surface temperature from MODIS daytime midinfrared data, IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4672-4679. https://doi.org/10.1109/TGRS. 2016.2548500   DOI
14 Wan, Z., 1999. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD) ver 3.3, Institute for Computational Earth System Science, University of California, Santa Barbara, CA, USA, pp. 77.
15 Wan, Z. and J. Dozier, 1996. A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905. https://doi.org/10.1109/36.508406   DOI
16 Zhao, E., Y. Qian, C. Gao, H. Huo, X. Jiang, and X. Kong, 2014. Land surface temperature retrieval using airborne hyperspectral scanner daytime mid-infrared data, Remote Sensing, 6(12): 12667-12685. https://doi.org/10.3390/rs61212667   DOI
17 Seemann, S.W., E.E. Borbas, R.O. Knuteson, G.R. Stephenson, and H.-L. Huang, 2008. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements, Journal of Applied Meteorology and Climatology, 47(1): 108-123. https://doi.org/10.1175/2007JAMC1590.1   DOI
18 Wan, Z. and Z.-L. Li, 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Transactions on Geoscience and Remote Sensing, 35(4): 980-996. https://doi.org/10.1109/36.602541   DOI
19 Wang, N., H. Wu, F. Nerry, C. Li, and Z.-L. Li, 2011. Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint, IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1291-1303. https://doi.org/10.1109/TGRS.2010.2062527   DOI
20 Watson, K., 1992. Two-temperature method for measuring emissivity, Remote Sensing of Environment, 42(2): 117-121. https://doi.org/10.1016/0034-4257(92)90095-2   DOI
21 Wang, N., Z.-L. Li, B.-H. Tang, F. Zeng, and C. Li, 2013. Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique, International Journal of Remote Sensing, 34(9-10): 3485-3502. https://doi.org/10.1080/01431161.2012.716536   DOI
22 Anderson, M.C., J.M. Norman, W.P. Kustas, R. Houborg, P.J. Starks, and N. Agam, 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sensing of Environment, 112(12): 4227-4241. https://doi.org/10.1016/j.rse.2008.07.009   DOI
23 Aires, F., C. Prigent, W.B. Rossow, and M. Rothstein, 2001. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, Journal of Geophysical Research: Atmospheres, 106(D14): 14887-14907. https://doi.org/10.1029/2001JD900085   DOI
24 Barducci, A. and I. Pippi, 1996. Temperature and emissivity retrieval from remotely sensed images using the "grey body emissivity" method, IEEE Transactions on Geoscience and Remote Sensing, 34(3): 681-695. https://doi.org/10.1109/36.499748   DOI
25 Berk, A., G.P. Anderson, P.K. Acharya, and E.P. Shettle, 2008. MODTRAN® 5.2.0.0 USER'S MANUAL, Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Bedford, MA, USA.
26 Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014. The concept of essential climate variables in support of climate research, applications, and policy, Bulletin of the American Meteorological Society, 95(9): 1431-1443. https://doi.org/10.1175/BAMS-D-13-00047.1   DOI
27 Borel, C.C., 1998. Surface emissivity and temperature retrieval for a hyperspectral sensor, Proc. of 1998 IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, Jul. 6-10, vol. 1, pp. 546-549. https://doi.org/10.1109/IGARSS.1998.702966   DOI
28 Gillespie, A.R., S. Rokukawa, S.J. Hook, T. Matsunaga, and A.B. Kahle, 1999. Temperature/emissivity separation algorithm theoretical basis document, version 2.4, ATBD Contract NAS5-31372, National Aeronautics and Space Administration, Washington D.C., USA, pp. 64.
29 Cristobal, J., J.C. Jimenez-Munoz, J.A. Sobrino, M. Ninyerola, and X. Pons, 2009. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature, Journal of Geophysical Research: Atmospheres, 114(D8): 1-16. https://doi.org/10.1029/2008JD010616   DOI
30 Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle, 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126. https://doi.org/10.1109/36.700995   DOI
31 Ma, X.L., Z. Wan, C.C. Moeller, W.P. Menzel, L.E. Gumley, and Y. Zhang, 2000. Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm, Applied Optics, 39(20): 3537-3550. https://doi.org/10.1364/AO.39.003537   DOI
32 Gillespie, A.R., E.A. Abbott, L. Gilson, G. Hulley, J.C. Jimenez-Munoz, and J.A. Sobrino, 2011. Residual errors in ASTER temperature and emissivity standard products AST08 and AST05, Remote Sensing of Environment, 115(12): 3681-3694. https://doi.org/10.1016/j.rse.2011.09.007   DOI
33 Hook, S.J., J.J. Myers, K.J. Thome, M. Fitzgerald, and A.B. Kahle, 2001. The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies, Remote Sensing of Environment, 76(1): 93-102. https://doi.org/10.1016/S0034-4257(00)00195-4   DOI
34 Jimenez-Munoz, J.C. and J.A. Sobrino, 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data, Journal of Geophysical Research: Atmospheres, 108(D22). https://doi.org/10.1029/2003JD003480   DOI
35 Hulley, G.C. and S.J. Hook, 2011. HyspIRI level-2 thermal infrared (TIR) land surface temperature and emissivity algorithm theoretical basis document, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, USA.
36 Jiang, G.M., Z.-L. Li, and F. Nerry, 2006. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI, Remote Sensing of Environment, 105(4): 326-340. https://doi.org/10.1016/j.rse.2006.07.015   DOI
37 Kim, Y., N. Malakar, G. Hulley, and S. Hook, 2019. Surface temperature retrieval from MASTER mid-wave infrared single channel data using radiative transfer model, Korean Journal of Remote Sensing, 35(1): 151-162. https://doi.org/10.7780/kjrs.2019.35.1.10   DOI
38 Li, Z.-L. and F. Becker, 1993. Feasibility of land surface temperature and emissivity determination from AVHRR data, Remote Sensing of Environment, 43(1): 67-85. https://doi.org/10.1016/0034-4257(93)90065-6   DOI
39 Peres, L.F., C.C. DaCamara, I.F. Trigo, and S.C. Freitas, 2010. Synergistic use of the two-temperature and split-window methods for land-surface temperature retrieval, International Journal of Remote Sensing, 31(16): 4387-4409. https://doi.org/10.1080/01431160903260973   DOI
40 Jimenez-Munoz, J.C., J. Cristobal, J.A. Sobrino, G. Soria, M. Ninyerola, and X. Pons, 2009. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data, IEEE Transactions on Geoscience and Remote Sensing, 47(1): 339-349. https://doi.org/10.1109/TGRS.2008.2007125   DOI
41 Kim, Y., 2020. Derivation of radiometric calibration coefficients for KOMPSAT-3A mid-wave infrared data using a radiative transfer model: An exploratory example, Korean Journal of Remote Sensing, 36(6-2): 1629-1634 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2020.36.6.2.12   DOI
42 Li, J., J. Li, E. Weisz, and D.K. Zhou, 2007. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances, Geophysical Research Letters, 34(16): 1-6. https://doi.org/10.1029/2007GL030543   DOI
43 Snyder, W.C., Z. Wan, Y. Zhang, and Y.Z. Feng, 1998. Classification-based emissivity for land surface temperature measurement from space, International Journal of Remote Sensing, 19(14): 2753-2774. https://doi.org/10.1080/014311698214497   DOI
44 Prata, A.J., 1993. Land surface temperatures derived from the advanced very high resolution radiometer and the along- track scanning radiometer: 1. Theory, Journal of Geophysical Research: Atmospheres, 98(D9): 16689-16702. https://doi.org/10.1029/93JD01206   DOI
45 Salisbury, J.W., A. Wald, and D.M. D'Aria, 1994. Thermal-infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements, Journal of Geophysical Research: Solid Earth, 99(B6): 11897-11911. https://doi.org/10.1029/93JB03600   DOI
46 Schowengerdt, R.A., 2007. Remote sensing: models and methods for image processing, 3rd ed., Academic Press, Cambridge, MA, USA.
47 Sobrino, J.A., Z.-L. Li, M.P. Stoll, and F. Becker, 1994. Improvements in the split-window technique for land surface temperature determination, IEEE Transactions on Geoscience and Remote Sensing, 32(2): 243-253. https://doi.org/10.1109/36.295038   DOI
48 Peres, L.F. and C.C. DaCamara, 2004. Land surface temperature and emissivity estimation based on the two-temperature method: sensitivity analysis using simulated MSG/SEVIRI data, Remote Sensing of Environment, 91(3-4): 377-389. https://doi.org/10.1016/j.rse.2004.03.011   DOI
49 Sobrino, J.A. and N. Raissouni, 2000. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco, International Journal of Remote Sensing, 21(2): 353-366. https://doi.org/10.1080/014311600210876   DOI
50 Soria, G. and J.A. Sobrino, 2007. ENVISAT/AATSR derived land surface temperature over a heterogeneous region, Remote Sensing of Environment, 111(4): 409-422. https://doi.org/10.1016/j.rse.2007.03.017   DOI