• Title/Summary/Keyword: Multiscale Decomposition

Search Result 19, Processing Time 0.03 seconds

Multiscale self-coordination of bidimensional empirical mode decomposition in image fusion

  • An, Feng-Ping;Zhou, Xian-Wei;Lin, Da-Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1441-1456
    • /
    • 2015
  • The bidimensional empirical mode decomposition (BEMD) algorithm with high adaptability is more suitable to process multiple image fusion than traditional image fusion. However, the advantages of this algorithm are limited by the end effects problem, multiscale integration problem and number difference of intrinsic mode functions in multiple images decomposition. This study proposes the multiscale self-coordination BEMD algorithm to solve this problem. This algorithm outside extending the feather information with the support vector machine which has a high degree of generalization, then it also overcomes the BEMD end effects problem with conventional mirror extension methods of data processing,. The coordination of the extreme value point of the source image helps solve the problem of multiscale information fusion. Results show that the proposed method is better than the wavelet and NSCT method in retaining the characteristics of the source image information and the details of the mutation information inherited from the source image and in significantly improving the signal-to-noise ratio.

Perceptual Fusion of Infrared and Visible Image through Variational Multiscale with Guide Filtering

  • Feng, Xin;Hu, Kaiqun
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1296-1305
    • /
    • 2019
  • To solve the problem of poor noise suppression capability and frequent loss of edge contour and detailed information in current fusion methods, an infrared and visible light image fusion method based on variational multiscale decomposition is proposed. Firstly, the fused images are separately processed through variational multiscale decomposition to obtain texture components and structural components. The method of guided filter is used to carry out the fusion of the texture components of the fused image. In the structural component fusion, a method is proposed to measure the fused weights with phase consistency, sharpness, and brightness comprehensive information. Finally, the texture components of the two images are fused. The structure components are added to obtain the final fused image. The experimental results show that the proposed method displays very good noise robustness, and it also helps realize better fusion quality.

Image Enhancement Using Homomorphic Transformation and Multiscale Decomposition (호모모프변환과 다중 스케일 분해를 이용한 영상향상)

  • Ahn, Sang-Ho;Kim, Ki-Hong;Kim, Young-Choon;Kwon, Ki-Ryong;Seo, Yong-Su
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1046-1057
    • /
    • 2004
  • An image enhancement method using both homomorphic transformation and multiscale decomposition is proposed. The original image is first transformed to homomorphic domain by taking the logarithm, is then separated to multiscales. These multiscales are combined with weighting. The combined signal is exponentially transformed back into intensity domain. In homomorphic domain, the magnitude control of low frequency component make change the dynamic range, and the magnitude control of the other frequency components contribute to enhancement of the contrast. The "${\AA}$ trous" algorithm, which has a simple and efficient scheme, is used for multiscale decomposition. The performance of proposed method is verified by simulation.

  • PDF

PROPERTIES OF RANDOM SIGNALS IN WAVELET DOMAIN

  • Lee, Young Seock;Kim, Sung Hwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.107-114
    • /
    • 1999
  • In many applications (e,g., identification of non-destructive testing signal and biomedical signal and multiscale analysis of image), it is of interest to analyze and identify phenomena occurring at the different scales. The recently introduced wave let transforms provide a time-scale decomposition of signals that offers the possibility of such signals. However, there is no corresponding statistical properties to development of multiscale statistical signal processing. In this paper, we derive such properties of random signals in wavelet domain.

  • PDF

A Hilbert-Huang Transform Approach Combined with PCA for Predicting a Time Series

  • Park, Min-Jeong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.995-1006
    • /
    • 2011
  • A time series can be decomposed into simple components with a multiscale method. Empirical mode decomposition(EMD) is a recently invented multiscale method in Huang et al. (1998). It is natural to apply a classical prediction method such a vector autoregressive(AR) model to the obtained simple components instead of the original time series; in addition, a prediction procedure combining a classical prediction model to EMD and Hilbert spectrum is proposed in Kim et al. (2008). In this paper, we suggest to adopt principal component analysis(PCA) to the prediction procedure that enables the efficient selection of input variables among obtained components by EMD. We discuss the utility of adopting PCA in the prediction procedure based on EMD and Hilbert spectrum and analyze the daily worm account data by the proposed PCA adopted prediction method.

Review of Data-Driven Multivariate and Multiscale Methods

  • Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • In this paper, time-frequency analysis algorithms, empirical mode decomposition and local mean decomposition, are reviewed and their applications to nonlinear and nonstationary real-world data are discussed. In addition, their generic extensions to complex domain are addressed for the analysis of multichannel data. Simulations of these algorithms on synthetic data illustrate the fundamental structure of the algorithms and how they are designed for the analysis of nonlinear and nonstationary data. Applications of the complex version of the algorithms to the synthetic data also demonstrate the benefit of the algorithms for the accurate frequency decomposition of multichannel data.

Multiscale finite element method applied to detached-eddy simulation for computational wind engineering

  • Zhang, Yue;Khurram, Rooh A.;Habashi, Wagdi G.
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2013
  • A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.

A Novel Multifocus Image Fusion Algorithm Based on Nonsubsampled Contourlet Transform

  • Liu, Cuiyin;Cheng, Peng;Chen, Shu-Qing;Wang, Cuiwei;Xiang, Fenghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.539-557
    • /
    • 2013
  • A novel multifocus image fusion algorithm based on NSCT is proposed in this paper. In order to not only attain the image focusing properties and more visual information in the fused image, but also sensitive to the human visual perception, a local multidirection variance (LEOV) fusion rule is proposed for lowpass subband coefficient. In order to introduce more visual saliency, a modified local contrast is defined. In addition, according to the feature of distribution of highpass subband coefficients, a direction vector is proposed to constrain the modified local contrast and construct the new fusion rule for highpass subband coefficients selection The NSCT is a flexible multiscale, multidirection, and shift-invariant tool for image decomposition, which can be implemented via the atrous algorithm. The proposed fusion algorithm based on NSCT not only can prevent artifacts and erroneous from introducing into the fused image, but also can eliminate 'block effect' and 'frequency aliasing' phenomenon. Experimental results show that the proposed method achieved better fusion results than wavelet-based and CT-based fusion method in contrast and clarity.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

Direction of Arrival Estimation in Colored Noise Using Wavelet Decomposition (웨이브렛 분해를 이용한 유색잡음 환경하의 도래각 추정)

  • Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.48-59
    • /
    • 2000
  • Eigendecomposition based direction-of-arrival(DOA) estimation algorithm such as MUSIC(multiple signal classification) is known to perform well and provide high resolution in white noise environment. However, its performance degrades severely when the noise process is not white. In this paper we consider the DOA estimation problem in a colored noise environment as a problem of extracting periodic signals from noise, and we take the problem to the wavelet domain. Covariance matrix of multiscale components which are obtained by taking wavelet decomposition on the noise has a special structure which can be approximated with a banded sparse matrix. Compared with noise the correlation between multiscale components of narrowband signal decays slowly, hence the covariance matrix does not have a banded structure. Based on this fact we propose a DOA estimation algorithm that transforms the covariance matrix into wavelet domain and removes noise components located in specific bands. Simulations have been carried out to analyze the proposed algorithm in colored noise processes with various correlation properties.

  • PDF