• Title/Summary/Keyword: Multiplex species-specific

Search Result 73, Processing Time 0.027 seconds

Development of Multiplex Polymerase Chain Reaction Assay for Identification of Angelica Species (Multiplex Polymerase Chain Reaction을 이용한 당귀 종 판별)

  • Kim, Yong Sang;Park, Hyeok Joo;Lee, Dong Hee;Kim, Hyun Kyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Background: Angelica gigas, A. sinensis, and A. acutiloba are commercially important in the herbal medicine market, and among them, A. gigas has the highest economic value and price. However, their similar morphological traits are often used for fraud. Despite their importance in herbal medicine, recognition of the differences between Angelica species is currently inadequate. Methods and Results: A multiplex polymerase chain reaction (PCR) method was developed for direct detection and identification of A. gigas, A. sinensis, and A. acutiloba. The gene for the distinction of species was targeted at ITS in the nucleus and trnC-petN gene in chloroplasts. The optimized multiplex PCR in the present study utilized each Angelica species-specific primer pairs. Each primer pair yielded products of 229 base pairs (bp) for A. gigas, 53 bp for A. sinensis, 170 bp for A. acutiloba. Additionally non-specific PCR products were not detected in similar species by species-specific primers. Conclusions: In the present study, a multiplex-PCR assay, successfully assessed the authenticity of Angelica species (A. gigas, A. sinensis, and A. acutiloba). and whole genome amplification (WGA) was performed after DNA extraction to identify, the species in the product. The detection method of raw materials developed in the present study could be applied to herbal medicine and health functional food management.

Development of Species-Specific PCR Primers for the Rapid and Simultaneous Identification of the Six Species of Genus Takifugu

  • Dong, Chun Mae;Park, Yeon Jung;Noh, Jae Koo;Noh, Eun Soo;An, Cheul Min;Kang, Jung-Ha;Park, Jung Youn;Kim, Eun-Mi
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Pufferfish (Takifugu spp.) are economically important edible marine fish. Mistakes in pufferfish classification can lead to poisoning; therefore, accurate species identification is critical. In this study, we used the mtDNA cytochrome c oxidase subunit I gene (COI) to design specific primers for six Takifugu species among the 21 domestic or imported pufferfish species legally sold for consumption in Korea. We rapidly and simultaneously identified these pufferfish species using a highly efficient, multiplex polymerase chain reaction (PCR) system with the six species-specific primers. The results showed that species-specific multiplex PCR (multiplex species-specific polymerase chain reaction; MSS-PCR) either specifically amplified PCR products of a unique size or failed. MSS-PCR yielded amplification fragment lengths of 897 bp for Takifugu pardalis, 822 bp for T. porphyreus, 667 bp for T. niphobles, 454 bp for T. poecilonotus, 366 bp for T. rubripes, and 230 bp for T. xanthpterus using the species-specific primers and a control primer (ca. 1,200 bp). We visualized the results using agarose gel electrophoresis to obtain accurate contrasts of the six Takifugu species. MSS-PCR analysis is easily performed and provides identification results within 6 h. This technique is a powerful tool for the discrimination of Takifugu species and will help prevent falsified labeling, protect consumer rights, and reduce the risk of pufferfish poisoning..

Multiplex PCR Assay for Simultaneous Detection of Korean Quarantine Phytoplasmas

  • Kim, Young-Hwan;Win, Nang Kyu;Back, Chang-Gi;Yea, Mi-Chi;Yim, Kyu-Ock;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.367-371
    • /
    • 2011
  • Multiplex PCR assays were developed for the simultaneous detection of ten important Korean quarantine phytoplasmas. The species-specific primers were designed based on ribosomal protein, putative preprotein translocase Y, immunodominant protein, elongation factor TU, chaperonin protein and the 16S rRNA genes of 'Candidatus (Ca.) Phytoplasma' species. Three main primer sets were prepared from ten designed primer pairs to limit nonspecific amplification as much as possible. The multiplex PCR assay using the three primer sets successfully amplified the correct conserved genes for each 'Ca. Phytoplasma' species. In addition, ten important 'Ca. Phytoplasma' species could be easily determined by recognizing band patterns specific for each phytoplasma species from three primer sets. Moreover, a high sensitivity of multiplex PCR for each primer set was observed for samples containing a low DNA concentration (10 ng/${\mu}l$). This study provides the useful multiplex PCR assay as a convenient method to detect the presence of ten important quarantine phytoplasmas in Korea.

Identification of eleven species of the Pleuronectidae family using DNA-based techniques

  • Eun-Mi Kim;Mi Nan Lee;Chun-Mae Dong;Eun Soo Noh;Young-Ok Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.678-688
    • /
    • 2023
  • Flatfish are one of the largest families in the order Pleuronectiformes and are economically important edible marine fish species. However, they have similar morphological characteristics leading to challenges in classifying correctly, which may result in mislabeling and illegal sales, such as fraudulent labeling of processed food. Therefore, accurate identification is important to ensure the quality and safety of domestic markets in Korea. Species-specific primers were prepared from the mainly consumed eleven species of the order Pleuronectiformes. To rapidly identify the 11 flatfish species, a highly efficient, rapid, multiplex polymerase chain reaction (PCR) with species-specific primers was developed. Species-specific primer sets were designed for the mitochondrial DNA cytochrome c oxidase subunit I gene. Species-specific multiplex PCR (MSS-PCR) either specifically amplified a PCR product of a unique size or failed. This MSS-PCR analysis is easy to perform and yields reliable results in less time than the previous Sanger sequencing methods. This technique could be a powerful tool for the identification of the 11 species b the family Pleuronectidae and can contribute to the prevention of falsified labeling and protection of consumer rights.

Multiplex TaqMan qPCR Assay for Detection, Identification, and Quantification of Three Sclerotinia Species

  • Dong Jae Lee;Jin A Lee;Dae-Han Chae;Hwi-Seo Jang;Young-Joon Choi;Dalsoo Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.382-388
    • /
    • 2022
  • White mold (or Sclerotinia stem rot), caused by Sclerotinia species, is a major air, soil, or seed-transmitted disease affecting numerous crops and wild plants. Microscopic or culture-based methods currently available for their detection and identification are time-consuming, laborious, and often erroneous. Therefore, we developed a multiplex quantitative PCR (qPCR) assay for the discrimination, detection, and quantification of DNA collected from each of the three economically relevant Sclerotinia species, namely, S. sclerotiorum, S. minor, and S. nivalis. TaqMan primer/probe combinations specific for each Sclerotinia species were designed based on the gene sequences encoding aspartyl protease. High specificity and sensitivity of each probe were confirmed for sclerotium and soil samples, as well as pure cultures, using simplex and multiplex qPCRs. This multiplex assay could be helpful in detecting and quantifying specific species of Sclerotinia, and therefore, may be valuable for disease diagnosis, forecasting, and management.

Multiplex Polymerase Chain Reaction Assay for Simultaneous Detection of Candida albicans and Candida dublinensis

  • Lim, Young-Hee;Lee, Do-Hyun
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.146-150
    • /
    • 2002
  • A multiplex polymerase chain reaction (PCR) assay was developed for the identification of two Candida species-albicans and dubliniensis. Three sets of primers were selected from different genomic sequences to specifically amplify a 516 bp fragment within the tops gene, specific for several species of the genus Candida (CCL primers); a 239 bp fragment within the $\alpha$INT1 gene, specific for Candida albicans (CAL primers); and a 175 bp fragment within the ALSD1 gene, specific for Candida dubliniensis (CDL primers). Using the primers in conjunction (multiplex PCR), we were able to detect both C. albicans and C. dubliniensis and to differentiate between them. The detection limit of the PCR assay was approximately 10 cells per milliliter of saline. Thus, this multiplex PCR assay can be applied for differentiation of C. albicans and C. dubliniensis from clinical specimens.

Differentiation of three scuticociliatosis causing species in olive flounder (Paralichthys olivaceus) by multiplex PCR

  • Kim, Sung Mi;Lee, Eun Hye;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.17 no.2
    • /
    • pp.145-149
    • /
    • 2004
  • The definitive identification of ciliate species by morphological characteristics relies on time-consuming and laborious staining techniques. Therefore, in this study, we discriminated 3 scuticociliatosis causing species - Pseudocohnilembus persalinus, Uronema marinum and Philasterides dicentrarchi - in cultured olive flounder by multiplex PCR. The multiplex PCR based on the species-specific amplification of small subunit ribosomal RNA (SS rRNA) gene sequence enabled us to distinguish the 3 scuticociliate species in a simple and rapid manner, even in the sample containing the three species simultaneously. These data suggest that the multiplex PCR strategy would make it possible to avoid the cumbersome and time-consuming procedures of morphological analysis for the definitive identification of scuticociliates.

Development of Raw Material Identification Method of Changnan-jeot and Gaiyang-jeot Using Multiplex PCR and Real-Time PCR (Multiplex PCR과 Real-Time PCR을 이용한 창난젓과 가이양젓 원료 검사법 개발)

  • Choi, Seong Seok;Seo, Yong Bae;Kim, Jong-Oh;Yang, Ji-Young;Shin, Jiyoung;Kim, Gun-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.289-297
    • /
    • 2021
  • In this study, multiplex PCR and real-time PCR were performed on Theragra chalcogramma (walleye pollock), Pangasianodon hypophthalmus (iridescent shark) and their processed foods, such as changnan-jeot and gaiyang-jeot (salted iridescent shark intestine). Species-specific primers for T. chalcogramma and P. hypophthalmus were designed, and genomic DNA was directly extracted from each sample to perform single PCR and multiplex PCR. As a result of PCR, in the case of single PCR, PCR bands of T. chalcogramma (297 bp) and P. hypophthalmus (132 bp) were identified, and in the case of multiplex PCR, it was confirmed that amplification occurred without cross-reaction between T. chalcogramma and P. hypophthalmus. As a result of checking the PCR sensitivity, the concentration of genomic DNA was detected up to 0.1 ng/µL in both single PCR and multiplex PCR. The real-time PCR results showed that the average Ct value of T. chalcogramma was 20.765±0.691, and the average Ct value of P. hypophthalmus sample was 35.719±1.828 in the T. chalcogramma species-specific primers. In the P. hypophthalmus species-specific primers, the average Ct value of the T. chalcogramma sample was 35.996±1.423, and the mean Ct value of the P. hypophthalmus sample was 20.096±0.793. These results demonstrated the significant differences in the efficiency, specificity and cross-reactivity of species-specific primers in real-time PCR. Based on these findings, 7 of changnan-jeot or gaiyang-jeot products were confirmed by multiplex PCR and real-time PCR, and valid results were confirmed in all samples.

Differential Diagnosis of Human Sparganosis Using Multiplex PCR

  • Jeon, Hyeong-Kyu;Kim, Kyu-Heon;Sohn, Woon-Mok;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Human sparganosis was diagnosed by morphological and genetic analyses in Korea. The complete mitochondrial genomes of Spirometra erinaceieuropaei and S. decipiens isolated in Korea have been recorded. Present study was performed to provide information to diagnose the etiologic agent of sparganosis by multiplex PCR using mitochondrial genome sequences of S. erinaceieuropaei and S. decipiens. In an effort to examine the differential diagnosis of spirometrid tapeworms, multiplex PCR assays were performed on plerocercoid larvae of S. erinaceieuropaei and S. decipiens. The PCR products obtained using species-specific primers were positively detected in all PCR assays on mixture of S. erinaceieuropaei and S. decipiens DNA. S. erinaceieuropaei-specific bands (239 bp and 401 bp) were obtained from all PCR assays using a mixture of S. erinaceieuropaei-specific primers (Se/Sd-1800F and Se-2018R; Se/Sd-7955F and Se-8356R) and S. erinaceieuropaei template DNA. S. decipiens-specific bands (540 bp and 644 bp) were also detected in all PCR assays containing mixtures of S. decipiens-specific primers (Se/Sd-1800F and Sd-2317R; Se/Sd-7955F and Sd-8567R) and S. decipiens template DNA. Sequence analyses on these species-specific bands revealed 100% sequence identity with homologous regions of the mtDNA sequences of S. erinaceieuropaei and S. decipiens. The multiplex PCR assay was useful for differential diagnosis of human sparganosis by detecting different sizes in species-specific bands.

Development of a Multiplex PCR Assay for Rapid Identification of Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates (다중 PCR 분석법을 이용한 참조기, 부세, 흑조기 및 긴가이석태의 신속한 종판별법 개발)

  • Noh, Eun Soo;Lee, Mi-Nan;Kim, Eun-Mi;Park, Jung Youn;Noh, Jae Koo;An, Cheul Min;Kang, Jung-Ha
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.746-753
    • /
    • 2017
  • In order to rapidly identify four drums species, Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates, a highly efficient and quick method has been developed using multiplex polymerase chain reaction (PCR) with species-specific primers. Around 1.4 kbp of the mitochondrial COI gene sequences from the four drums species were aligned, and species-specific forward primers were designed, based on the single nucleotide polymorphism (SNP). The optimal conditions for PCR amplification were selected through cross-reactivity, using a gradient PCR method. The PCR results demonstrated species-specific amplification for each species at annealing temperatures between 50 and $62^{\circ}C$. Multiplex species-specific PCR (MSS-PCR) amplification reactions with four pairs of primers were performed for sixteen specimens of each species. MSS-PCR lead to a species-specific amplification of a 1,540 bp fragment in L. polyactis, 1,013 bp in A. nibe, 474 bp in L. crocea, and 182 bp in P. elongates, respectively. The four different sizes of each PCR product can be quickly and easily detected by single gel electrophoresis. The sensitivity of the MSS-PCR of the DNA was up to $0.1ng/{\mu}l$ as a starting concentration for the four different species tested. These results suggest that MSS-PCR, with species-specific primers based on SNP, can be a powerful tool in the rapid identification of the four drums species, L. polyactis, L. crocea, A. nibe, and P. elongates.