• Title/Summary/Keyword: Multiple-input multiple-output MIMO

Search Result 672, Processing Time 0.032 seconds

Power based scheduling for Collaborative MIMO system (Collaborative MIMO 시스템을 위한 전력기반 스케줄링 방식)

  • Kim, Young-Joon;Lee, Jung-Seung;Baik, Doo-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1209-1216
    • /
    • 2008
  • In order to maximize spectrum efficiency and data rate MIMO(Multiple Input Multiple Output) is adopted to wireless system. OFDM-based WiMAX and LTE accommodate MIMO as mandatory technology. STC(Space Time Coding) and SM(Spatial Multiplexing) are used in downlink while in uplink C-MIMO(Collaborative MIMO) is used to improve data throughput. In this paper conventional pairing schemes, RPS(Random Pairing Scheduling) and DPS(Determinant Pairing Scheduling) are analyzed. From the analysis the performance of DPS algorithm is better than that of RPS because DPS measures orthogonal factor between paired users. However, there are potential problems such as hardware complexity and performance. To overcome the issues Power-Based Scheduling(PBS) algorithm is proposed for C-MIMO. PBS can provide higher performance compared to RPS and dramatically reduce hardware complexity compared to DPS

Performance Analysis of Coordinated Random Beamforming Technique in Multi-cell Environments

  • Lee, Jong-Min;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.393-398
    • /
    • 2010
  • For multi-cell environments, coordinated random beamforming technique in multiuser MIMO(multiple-input multiple-output) broadcast channel is considered. In order to mitigate severe interference at receivers, the multi-cell environments might require complex transmitter and receiver design because the scheduler decision based on full channel state information (CSI) in one cell must be intertwined with decision made by other cells' CSI. With limited CSI, however, this paper considers a scheme of randomizing transmitters' beamforming but being coordinated with other cell transmitters. The transmitters in each cell share random beamforming patterns and schedule data transmission within coherent scheduling period. The corandomized beams allow the users to be selected with the highest SINRs even in multi-cell environments. We analyze the performance of the proposed scheme. And numerical results show that the scheme achieves better performance than the conventional random beamforming when applying to multi-cell environments.

Cooperative Synchronization and Channel Estimation in Wireless Sensor Networks

  • Oh Mi-Kyung;Ma Xiaoli;Giannakis Georgios B;Park Dong-Jo
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.284-293
    • /
    • 2005
  • A critical issue in applications involving networks of wireless sensors is their ability to synchronize, and mitigate the fading propagation channel effects. Especially when distributed 'slave' sensors (nodes) reach-back to communicate with the 'master' sensor (gateway), low power cooperative schemes are well motivated. Viewing each node as an antenna element in a multi-input multi-output (MIMO) multi-antenna system, we design pilot patterns to estimate the multiple carrier frequency offsets (CFO), and the multiple channels corresponding to each node-gateway link. Our novel pilot scheme consists of non-zero pilot symbols along with zeros, which separate nodes in a time division multiple access (TDMA) fashion, and lead to low complexity schemes because CFO and channel estimators per node are decoupled. The resulting training algorithm is not only suitable for wireless sensor networks, but also for synchronization and channel estimation of single- and multi-carrier MIMO systems. We investigate the performance of our estimators analytically, and with simulations.

A New Code Acquisition Scheme for MIMO CDMA Channel with Slightly Different Arrival Time by Hopping Pilot Data. (수신 신호의 도착 지연 차이를 갖는 MIMO CDMA 채널에서 코드 동기 성능 향상 방안 연구.)

  • 권윤주;구정회;김경호;이충용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.11-14
    • /
    • 2003
  • 본 논문에서는 다중안테나 시스템(Multiple-Input Multiple-Output : MIMO)과 다중코드(Multicode)를 사용하는 코드분할 다중접속(Code Division Multiple Access : CDMA) 시스템의 하향링크(from the base station to the mobile) 환경하에서 채널응답의 중요한 요소인 전송지연시간(Propagation Delay Time)이 기존의 단일안테나(Single-Input Single-Output : SISO) 채널 환경에서 다중안테나 채널 환경으로 바뀌어 적용되었을 때 발생할 수 있는 환경 변화를 찾아보고 그러한 환경이 코드 동기 성능에 미치는 영향과 그러한 문제점을 해결할 수 있는 효율적인 파일롯(Pilot) 전송 기법을 제안 하였다. 또한 모의 실험을 통하여 도착 시간 지연 차이의 분산(variance)값이 검파 성능에 미치는 영향을 확인 하였다.

  • PDF

MIMO 시스템에서 Zero-forcing 검파 결과의 검증 기법에 관한 연구

  • Jeon, Hyeong-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.842-846
    • /
    • 2007
  • Zero Forcing (ZF) 검파 결과는 신호 대 잡음 환경이 양호한 경우 약 80% 이상이 Maximum Likelihood (ML) 검파 결과와 일치한다. 간단한 검증기를 통해 ZF 검파 결과가 ML 검파 결과와 일치하는지 알 수 있다면 검증 결과에 따라 복잡한 ML 검파 과정이나 별도의 검색 과정을 생략할 수 있다. 본 논문에서는 multiple input multiple output (MIMO) 시스템에서 ZF 검파 결과에 대한 검증 방식을 제안하였다. 제안된 검증 방식은 ZF 검파 결과를 이용하여 MIMO 신호를 single input multiple output (SIMO) 신호로 변환한 후 검파를 수행하면 안테나 다이버시티 이득을 얻을 수 있고 잡음 분산이 줄어드는 효과를 이용하였다. 제안된 검증기는 컴퓨터 시뮬레이션 결과 신호 대 잡음이 양호한 경우 80%이상의 정확한 true 판정 확률을 얻었으며 이때 false 판정 확률은 $10^{-4}$이하를 보였다.

  • PDF

Real-time Implementation of Phased RF Sub-Array MIMO Algorithm for Radar (레이다용 Phased RF Sub-Array MIMO 알고리즘 실시간 구현)

  • Wansik Kim;Hwanyong Yeo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.517-522
    • /
    • 2023
  • Existing radars have been developed by applying RF sub-array algorithms, and recently, fully digital Multiple-Input Multiple-Output (MIMO) radar algorithms have been implemented for vehicle radars. In this paper, the radar algorithm applying the Phased MIMO method to the hardware of the RF sub-array method, which is an unsecured technology, was implemented and verified in real time. In order to secure RF sub-array Phased MIMO algorithm technology, a hardware structure for FPGA-based real-time signal processing was presented, and performance was first predicted through design and simulation. Through this, the digital signal of FPGA-based broadband MIMO FMCW radar The processing hardware was developed, and the Phased MIMO radar algorithm of the RF sub-Array method was finally implemented and verified in real time. Based on this, it is judged that it will be possible to secure and apply core technologies necessary for terahertz band radar in the future.

Performance of MIMO MC-CDMA systems combining multi-beamforming algorithm with space-time coding (적응 다중 빔형성 기법과 시공간 부호가 결합된 MIMO MC-CDMA시스템의 성능)

  • Kim, Chan Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.53-60
    • /
    • 2013
  • In this paper, the new multi-beamforming is proposed for Multiple-input multiple-output (MIMO) Multicarrier-Code division multiple access(MC-CDMA) systems to overcome the decrease of performance due to multiuser interference and multiple-antenna interference. Installing the number of multi-beamformer which is equal to the number of multi-transmitter antennas and exploiting the proposed approach at the receiver of MIMO MC-CDMA, the multi-beams are formed toward each multi-antenna of desired user and null beam are formed to other interference. Therefore, the performance of MIMO MC-CDMA system is improved as removing the interference signal. BER performance improvement is investigated through computer simulation by the proposed approach to MIMO MC-CDMA system.

The Phase Estimation Algorithm of Arrival Time Difference in MIMO Underwater Sensor Communication (MIMO 수중 통신에서 도착시간 차이에 따른 보상 알고리즘)

  • Baek, Chang-uk;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1531-1538
    • /
    • 2015
  • In this paper, we proposed receiver structure based on an iterative turbo equalization to cope with phase difference between two sensors in MIMO underwater communication channel. In a space-time coded system, it is often assumed that there are no phase errors among the multiple transmitter and receiver chains. In this paper, we have studied the effect of the phase errors between different transmit sensors and different propagation paths in the environment of MIMO underwater communication system, and have shown through BER performance by computer simulations that the bit-error-rate performance can be severely degraded. A decision-directed estimation and compensation algorithm has been proposed to minimize their effects on the system performance. In this paper, we investigate the phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for underwater channel model to minimize their effects.

Multiple-Packet Reception MAC Protocol Applying Pulse/Tone Exchange in MIMO Ad-Hoc Networks

  • Yoshida, Yuto;Komuro, Nobuyoshi;Ma, Jing;Sekiya, Hiroo
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.141-148
    • /
    • 2016
  • This paper proposes a medium access control (MAC) protocol for multiple-input multiple-output (MIMO) ad-hoc networks. Multiple-packet receptions in MIMO systems have attracted as a key technique to achieve a high transmission rate. In the conventional protocols for multiple-packet receptions, timing offsets among multiple-frame transmissions cause frame collisions induced by hidden nodes, which degrades network performance. In the proposed protocol, transmission synchronization among hidden nodes can be achieved by applying pulse/tone exchanges. By applying the pulse/tone exchanges, multiple-packet receptions among hidden nodes can be achieved, which enhances network throughputs compared with the conventional protocol. Simulation results show effectiveness of the proposed protocol.

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.