• 제목/요약/키워드: Multiple vehicle tracking

검색결과 69건 처리시간 0.025초

A real-time multiple vehicle tracking method for traffic congestion identification

  • Zhang, Xiaoyu;Hu, Shiqiang;Zhang, Huanlong;Hu, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2483-2503
    • /
    • 2016
  • Traffic congestion is a severe problem in many modern cities around the world. Real-time and accurate traffic congestion identification can provide the advanced traffic management systems with a reliable basis to take measurements. The most used data sources for traffic congestion are loop detector, GPS data, and video surveillance. Video based traffic monitoring systems have gained much attention due to their enormous advantages, such as low cost, flexibility to redesign the system and providing a rich information source for human understanding. In general, most existing video based systems for monitoring road traffic rely on stationary cameras and multiple vehicle tracking method. However, most commonly used multiple vehicle tracking methods are lack of effective track initiation schemes. Based on the motion of the vehicle usually obeys constant velocity model, a novel vehicle recognition method is proposed. The state of recognized vehicle is sent to the GM-PHD filter as birth target. In this way, we relieve the insensitive of GM-PHD filter for new entering vehicle. Combining with the advanced vehicle detection and data association techniques, this multiple vehicle tracking method is used to identify traffic congestion. It can be implemented in real-time with high accuracy and robustness. The advantages of our proposed method are validated on four real traffic data.

위성발사체 궤도추정을 위한 융합필터 연구 (Fusion Tracking Filter for Satellite Launch Vehicles)

  • 유성숙;김정래;송용규;고정환
    • 항공우주시스템공학회지
    • /
    • 제1권3호
    • /
    • pp.37-42
    • /
    • 2007
  • The flight safety system for the satellite launch vehicles is required in order to minimize the risk due to launch vehicle failure. For prompt and reliable decision of flight termination, the flight safety system usually uses multiple sensors to estimate launch vehicle's flight trajectory. In that case, multiple types of observed tracking data makes it difficult to identify the flight termination condition. Therefore, a fusion tracking filter handling the multiple tracking data is necessary for the flight safety system. This research developed a simulation software for generating multiple types of launch vehicle tracking data, and then processed the data with fusion filters.

  • PDF

복수개의 동영상 시퀜스를 이용한 차량추적 (A Rule-Based Vehicle Tracking with Multiple Video Sequences)

  • 박은종;소형준;정성환;이준환
    • 한국ITS학회 논문지
    • /
    • 제6권3호
    • /
    • pp.45-56
    • /
    • 2007
  • 비디오를 이용한 차량 추적 자동화 기술은 차량속도 등의 정확한 교통량 측정을 위해 중요하다. 그러나 단일 카메라로 취득된 비디오를 이용한 차량추적의 경우 카메라의 유한한 시계(field of view)때문에 추적범위가 제약된다. 차량추적 범위를 넓히고 차량행태에 대한 보다 많은 정보를 얻기 위해서는 복수개의 카메라로 연속된 추적영역을 촬영하여 분석하는 방식을 이용할 수 있다. 본 논문에서는 규칙기반 차량추적 알고리즘을 적용한 두 대의 동기된 비디오 시??스에서 연속적으로 추적하는 방식을 제안한다. 제안된 방법에서는 영상분석을 통해 나타날 수 있는 거의 모든 경우를 규칙을 만들기 위해 고려되었으며, 칼만 필터를 이용하여 예측성능을 향상시켰다. 제안된 연속된 비디오에서의 차량추적 방법은 확장된 추적범위에서 차량의 순간속도, 차량의 개별행태 등에 보다 많은 정보를 취득하는데 성공적으로 활용될 수 있다.

  • PDF

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

복합모델 다차량 추종 기법을 이용한 차량 주행 제어 (Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm)

  • 문일기;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

지능형 주차 관제를 위한 실내주차장에서 실시간 차량 추적 및 영역 검출 (Realtime Vehicle Tracking and Region Detection in Indoor Parking Lot for Intelligent Parking Control)

  • 연승호;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.418-427
    • /
    • 2016
  • A smart parking management requires to track a vehicle in a indoor parking lot and to detect the place where the vehicle is parked. An advanced parking system watches all space of the parking lot with CCTV cameras. We can use these cameras for vehicles tracking and detection. In order to cover a wide area with a camera, a fisheye lens is used. In this case the shape and size of an moving vehicle vary much with distance and angle to the camera. This makes vehicle detection and tracking difficult. In addition to the fisheye lens, the vehicle headlights also makes vehicle detection and tracking difficult. This paper describes a method of realtime vehicle detection and tracking robust to the harsh situation described above. In each image frame, we update the region of a vehicle and estimate the vehicle movement. First we approximate the shape of a car with a quadrangle and estimate the four sides of the car using multiple histograms of oriented gradient. Second we create a template by applying a distance transform to the car region and estimate the motion of the car with a template matching method.

파티클 필터를 장착한 가중된 다중 인스턴스학습을 이용한 전방차량 추적 (Forward Vehicle Tracking Based on Weighted Multiple Instance Learning Equipped with Particle Filter)

  • 박근호;이준환
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.377-385
    • /
    • 2015
  • 본 논문에서는 파티클 필터를 장착하고 WMIL(Weighted Multiple Instance Learning)을 이용한 전방차량 추적 알고리즘을 제안하였다. 제안된 알고리즘에서 영상표현은 Haar-like 특징들을 사용하고 차량인식 결과는 추적하고자 하는 전방차량의 위치를 알아내는데 사용된다. 제안된 방식에서 WMIL과 파티클 필터를 결합하기 위해 기존의 외관모델을 이용한 추적에서 탐색영역에서 영상조각의 추적객체 신뢰도 맵을 계산하는 대신에 파티클 필터의 전파, 관측, 추정, 선택 그리고 분류기 훈련 등의 단계를 매 프래임 마다 순차적으로 수행하여 객체의 새로운 위치를 갱신하였다. 제안된 전방차량 추적방식은 실험을 통해 Ada-boost, MIL(Multiple Instance Learning)이나 WMIL 방법을 이용하는 추적에 비해 파티클 필터로 인해 계산량 증가는 불가피하나 추적의 질적인 정확도는 국도, 고속도로, 터널 및 시내도로 등의 실험 동영상에서 추적대상의 위치오차가 평균 4.5화소 정도로 기존의 추적방법들에 비해 크게 개선되는 것을 확인하였다.

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선 (Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion)

  • 송하룡
    • 한국산업정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.47-56
    • /
    • 2015
  • 다중센서 시스템에서 센서 바이어스를 제거하는 센서 등록 과정은 각각의 센서가 공통된 좌표를 갖게 하기 위해 반드시 필요하다. 만약 센서 등록 과정을 적절하게 처리하지 않는다면, 거대한 추적 에러 또는 같은 목표물을 향한 다수의 허수 트랙이 발생하게 되어 추적에 실패하게 된다. 특히, 발사체 추적에 있어서 각각의 추적 장비는 반드시 적절한 센서등록 과정을 거쳐야 하며, 이 후 다중센서 융합알고리즘을 활용하면 발사체 추적 성능을 높이고 다중 추적 시스템에 정확한 지향입력으로 활용 가능하게 된다. 본 논문에서는 실시간 바이어스 추정/제거 알고리즘과 비동기 다중 센서 융합 기법을 제안하였다. 제안된 바이어스 추정 알고리즘은 GPS와 다중 레이더 간의 의사 바이어스 측정치를 활용하였고, 비동기 센서 융합알고리즘 적용을 통해 추적 성능을 향상하였다.