DOI QR코드

DOI QR Code

Forward Vehicle Tracking Based on Weighted Multiple Instance Learning Equipped with Particle Filter

파티클 필터를 장착한 가중된 다중 인스턴스학습을 이용한 전방차량 추적

  • Park, Keunho (School of Computer Engineering and Science, Chonbuk National University) ;
  • Lee, Joonwhoan (School of Computer Engineering and Science, Chonbuk National University)
  • 박근호 (전북대학교 공과대학 컴퓨터공학부) ;
  • 이준환 (전북대학교 공과대학 컴퓨터공학부)
  • Received : 2015.01.26
  • Accepted : 2015.06.22
  • Published : 2015.08.25

Abstract

This paper proposes a novel forward vehicle tracking algorithm based on the WMIL(Weighted Multiple Instance Learning) equipped with a particle filter. In the proposed algorithm Haar-like features are used to train a vehicle object detector to be tracked and the location of the object are obtained from the recognition result. In order to combine both the WMIL to construct the vehicle detector and the particle filter, the proposed algorithm updates the object location by executing the propagation, observation, estimation, and selection processes involved in particle filter instead of finding the credence map in the search area for every frame. The proposed algorithm inevitably increases the computation time because of the particle filter, but the tracking accuracy was highly improved compared to Ababoost, MIL(Multiple Instance Learning) and MIL-based ones so that the position error was 4.5 pixels in average for the videos of national high-way, express high-way, tunnel and urban paved road scene.

본 논문에서는 파티클 필터를 장착하고 WMIL(Weighted Multiple Instance Learning)을 이용한 전방차량 추적 알고리즘을 제안하였다. 제안된 알고리즘에서 영상표현은 Haar-like 특징들을 사용하고 차량인식 결과는 추적하고자 하는 전방차량의 위치를 알아내는데 사용된다. 제안된 방식에서 WMIL과 파티클 필터를 결합하기 위해 기존의 외관모델을 이용한 추적에서 탐색영역에서 영상조각의 추적객체 신뢰도 맵을 계산하는 대신에 파티클 필터의 전파, 관측, 추정, 선택 그리고 분류기 훈련 등의 단계를 매 프래임 마다 순차적으로 수행하여 객체의 새로운 위치를 갱신하였다. 제안된 전방차량 추적방식은 실험을 통해 Ada-boost, MIL(Multiple Instance Learning)이나 WMIL 방법을 이용하는 추적에 비해 파티클 필터로 인해 계산량 증가는 불가피하나 추적의 질적인 정확도는 국도, 고속도로, 터널 및 시내도로 등의 실험 동영상에서 추적대상의 위치오차가 평균 4.5화소 정도로 기존의 추적방법들에 비해 크게 개선되는 것을 확인하였다.

Keywords

References

  1. H. S. Chun, Development Trends of Intelligent Vehicle Safety Technology, Electronics and Telecommunications Research Institute, 2012.
  2. S. H. Yoon, and others, Trends in Image Recognition SoC for Smart Vechicles, Electronics and Telecommunications Research Institute, 2012.
  3. B. Babenko, M. H. Yang, and S. Belongie, "Visual Tracking with Online Multiple Instance Learning," IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 983-990, 2009.
  4. P. Viola, M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 511-518, 2001.
  5. G. J. Edwards, C. J. Taylor, and T. F. Cootes, "Interpreting Face Images using Active Appearance Models," Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, pp. 300-305, 1998.
  6. T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, Issue. 6, pp. 681-685, 2001. https://doi.org/10.1109/34.927467
  7. H. Grabner, M. Grabner, and H. Bischof, "Real-time Tracking via On-line Boosting," In Proceedings British Machine Vision Conference (BMVC), Vol. 1, pp. 47-56, 2006.
  8. K. Zhang, and H. Song, "Real-time visual tracing via online weighted multiple instance learning," Pattern Recognition, Vol. 46, Issue. 1, pp. 397-411, 2013. https://doi.org/10.1016/j.patcog.2012.07.013
  9. P. Viola, J. C. Platt, and C. Zhang, "Multiple Instance Boosting for Object Detection," Advances in Neural Information Processing Systems, pp. 1417-1426, 2007.
  10. R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Journal of Fluids Engineering, Vol. 82, Issue. 1, pp. 35-45, 1960.
  11. M. Isard, and A. Blake, "Condensation-Conditional Density Propagation of Visual Tracking,", International Journal of Computer Vision, Vol. 29, Issue. 1, pp. 5-28, 1998. https://doi.org/10.1023/A:1008078328650
  12. F. Gustafsson, "Particle Filter Theory and Practice with Positioning Applications," Aerospace and Electronic Systems Magazine, IEEE, Vol. 25, Issue 7, pp. 53-82, 2010. https://doi.org/10.1109/MAES.2010.5546308
  13. E. S. Chio, C. H. Lee, "Feature Extraction Based on The Bhattacharyya Distance," Pattern Recognition, Vol. 36, Issue 8, pp. 1703-1709, 2003. https://doi.org/10.1016/S0031-3203(03)00035-9
  14. Y. Song, Q. Li, "Visual Tracking Based on Multiple Instance Learning Particle Filter," Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, pp 1063-1067, August 7-10, Beijing, China.