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This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-
entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. 
However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, 
thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not 
achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the 
estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient 
β model-based interacting multiple model-extended Kalman filter (β-IMM-EKF) for precise tracking of an RV. To evaluate the 
performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter 
were compared and assessed with the proposed β-IMM-EKF for precise tracking of an RV.

Keywords: ballistic coefficient, coefficient β model-based interacting multiple model-extended Kalman filter, gamma 
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1. INTRODUCTION

This study considers the tracking and impact point 

prediction (IPP) of a re-entry space launch vehicle with 

unknown ballistic coefficients and air densities. The 

tracking of a re-entry vehicle (RV) (Costa 1994, Bar-Shalom 

et al. 2001, Farina et al. 2002) is an extremely important 

problem for safety assurance through a correct ground IPP. 

In the case of a space launch vehicle, the major objective 

is to transport and place satellites into orbit. Thus it is 

designed to be launched in accordance with an elaborate 

predetermined trajectory. Thus far, however, quite many 

cases of launch failures have occurred. If an abnormal thrust 

halt or an abrupt departure from a planned path happens, it 

is necessary to track the vehicle or predict the impact point 

in real time for safety concerns. As for a scenario of a true 

target trajectory, we assumed that the vehicle has launched 

normally with beacon mode tracking, but an abnormal 

situation occurs 170 seconds after lift-off. The vehicle’s 

thrust is terminated and no communication is available 

with ground stations. At that time the beacon mode tracking 

function is halted and the mode should be adjusted as not 

to lose the target.

Tracking an RV and its IPP are the subjects to estimate 

the state variables of the dynamic model of a ballistic 

target. The performance of an estimation filter depends 

on the target dynamic model, the measurement model, 

and the filter structure. The uncertainties normally found 

during target modeling are ballistic coefficients, mass of 

target, initial values of state variables, and aerodynamic 

reference area, etc. From among these, the estimation of 

the ballistic coefficient is crucial for precise tracking of 

an RV. These subjects have been studied vigorously over 

the past decades. Mehra (1971) performed a comparison 

of an RV’s tracking performance using non-linear filters 

including the extended Kalman filter (EKF). Siouris et al. 

(1997) proposed the extended interval Kalman filter for the 

precise tracking of an RV. Cardillo et al. (1999) introduced 
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a new tracking filter using EKF for re-entry objects with 

uncertain drag. Also, Minvielle (2005) reviewed the RV 

tracking chronology and introduced several non-linear 

filters including EKF. According to previous research, 

various tracking algorithms using EKF were proposed by 

linearizing the non-linear system to estimate the ballistic 

coefficients as well as other kinetic states, such as position, 

velocity, and acceleration. Typically the constant ballistic 

coefficient (CBC) filter was introduced to estimate the 

ballistic coefficient β (Dwivedi et al. 2005), the constant 

drag parameter (CDP) filter to estimate the drag parameter 

α, which is defined as the inverse of β (Mehra 1971), 

and the gamma augmented (GA) filter to estimate the 

gamma (γ) which is defined as the function of β and air 

density ρ (Bar-Shalom et al. 2001). Recently, Ghosh & 

Mukhopadhyay (2011) proposed the gamma bootstrapped 

(GB) filter which estimates basic kinetic states in the main 

filter with bootstrapping the separately estimated γ and 

its derivative from the sub filter. If the target modeling 

is inaccurate in a single model filter, especially for 

maneuvering target tracking, an estimation error may 

increase or diverge. To overcome this disadvantage of a 

single model filter, Blom & Bar-Shalom (1988) introduced 

the interacting multiple model (IMM) filter algorithm. The 

IMM filter is known for superior performance in tracking 

maneuvering targets and has high applicability in a 

variety of fields. For tracking a ballistic target, Farina et al. 

(2002) proposed a 4-model IMM filter which consists of a 

6-dimensional Kalman filter (KF), a 9-dimensional KF, and 

2 different CBC model KFs, and Farrell (2008) proposed 

a 3-model IMM filter which had a constant axial force 

model, a ballistic acceleration model, and standard auto-

correlated acceleration Singer model. Particularly, Yuan 

et al. (2010) made use of an IMM filter to estimate the 

thrusting state for the purpose of IPP.

In this paper, we propose the ballistic coefficient β 

model based IMM-EKF (β-IMM-EKF) using alternately 

chosen β models according to the range of real β that 

the target may have. The β-IMM-EKF is compared and 

evaluated with the two other ballistic coefficient model 

based filters, these being the GA and GB filter, since both 

the GA or GB filter has generally better performance than 

a CBC or CDP filter. The parameter γ, which is the ratio of 

air density and ballistic coefficient for the target model, 

is used as an estimated state variable in the GA and GB 

filter using EKF. In β-IMM-EKF, γ can be calculated from 

the estimated β and an air density model to compare 

its tracking performance with the GA or GB filter. The 

performance of these filters to track and predict the impact 

point in the re-entry phase are compared and assessed.

2. THE REFERENCE FRAME AND THE TARGET 
MODEL

2.1 The Reference Frames for the Motion of an RV

The motion model of an RV is assumed to be a point 

mass which is applied to the rotating ellipsoidal earth. 

The difference between the actual and dynamic model is 

modeled as process noise. The reference frames used for 

an RV’s dynamic model are the Earth-centered-inertial 

coordinate system (ECI-CS), the Earth-centered-earth-

fixed coordinate system (ECEF-CS) and the East-north-

up coordinate system (ENU-CS) (Regan 1984, Siouris et al. 

1997, Li & Jilkov 2001).

In Fig. 1, ECI-CS, Oxiyizi, is a fixed inertial frame as its 

origin is the center of the earth. It is a right-handed system 

with the origin O. Here the axis Oxi points to the direction 

of the line where the longitude crossing the launch point of 

the vehicle and the equator meet. The axis Ozi points to the 

direction of the North Pole. ECEF-CS, Oxfyfzf, which has a 

rotational motion with the earth as its origin, is on the same 

position with ECI-CS. The radar ENU-CS, Oxnynzn, which 

has the origin On, is fixed on the surface of the earth where 

the tracking radar is placed. The up direction of ENU-CS, 

Onzn, is normal to the earth’s surface whereas Onxn axis 

points east and Onyn axis points north.

2.2 Target Modeling

Dynamic models (Li & Jilkov 2001, Ghosh & Mukhopadhyay 

2011) are used to estimate the tracking of an RV. The issues 

of the ballistic and re-entry phase can be analyzed with 

respect to gravity and drag only. We derive the acceleration 

model of an RV.

2.2.1 Gravity

The acceleration of RV by gravitational force (Regan 1984, 

Fig. 1. Geometry for reference frame.
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Bar-Shalom et al. 2001) in the ECI-CS can be expressed as:

	 (1)

In Eq. (1), μ is a universal gravitational constant as 

μ=3.986006 × 1014 m3/sec2 and p is the position vector of an 

RV. Eq. (1) can be expressed in the ENU-CS as:

	 (2)

whereas  is the angular velocity vector of the earth’s 

rotation,  is the Coriolis force and  is 

the centrifugal force. From Eqs. (1) and (2), the gravitational 

acceleration in the ENU-CS is

	 (3)

whereas Ф is the coordinate transformation matrix and r' is 

the distance between the radar and the center of the earth.

2.2.2 Drag

The acceleration by drag force is as:

	 (4)

whereas the ballistic coefficient (Regan 1984, Dodin et el. 

2005) is defined as:

	 (5)

No t e  t hat  m  d e n o t e s  t h e  ma s s,  C
D

 d e n o t e s  t h e 

aerodynamic drag coefficient and S denotes the cross-

sectional reference area of the RV. β is basically an unknown 

parameter to be estimated during the tracking of an 

unknown RV, but if all information of an RV is known, it 

is quite possible to directly calculate β. In Eq. (4) the air 

density ρ can be modeled as a function of altitude h as 

follows:

	 (6)

whereas the parameters ρ0 and K of the target are given as in 

Table 1, based on the 1976 US standard atmosphere model 

(United States Committee on Extension to the Standard 

Atmosphere 1976) . Eq. (6) is used to generate the true target 

trajectory.

2.2.3 The Acceleration Model of an RV

From Eqs. (1) through (4), the acceleration model of RV 

in re-entry phase is as:

	 (7)

3. BALLISTIC COEFFICIENT BASED ALGORITHMS

In this section, we introduce several ballistic coefficient 

model-based estimation algorithms which are evaluated 

as distinguished tracking performances in previous papers. 

These are the GA filter and the GB filter. In addition, 

we designed the β-IMM-EKF to compare the tracking 

performance with that of the GA and GB filters.

3.1 Measurement Model for the Filters

A measurement model is designed and used commonly 

in filter algorithms. Measurements which are modeled in 

the radar ENU-CS are the relative range, elevation, and 

azimuth between the target and the tracking radar. The 

measurement equation is as:

	 (8)

whereas:

	 (9)

Table 1. Air density model parameters.

h (km) ρ0 (kg/m3) K (m)

< 9.144 1.2256 9,144

≥ 9.144 1.7523 6,705.6



366http://dx.doi.org/10.5140/JASS.2012.29.4.363

J. Astron. Space Sci. 29(4), 363-374 (2012)

In Eq. (8) the measurement noise vector νk and its 

covariance Rk are white Gaussian sequences.

3.2 The GA Filter

The GA filter is a type of ballistic coefficient based 

estimation algorithm, but it regards the variation of 

air density additionally which significantly affects the 

nonlinearity of the system. Thus the GA filter estimates 

γ, which is composed of the ballistic coefficient β and 

the air density ρ, while a ballistic coefficient augmented 

filter (Mehra 1971, Dwivedi et al. 2005) does only β. The 

basic idea of the GA filter is that the new state γ is simply 

augmented in the state equation as described in Fig. 2. The 

other procedures are the same as EKF (Grewal & Andrews 

2001).

3.2.1 Gamma Model

The ballistic coefficient β is a function of the aerodynamic 

drag coefficient as shown in Eq. (5). Also, the air density 

model ρ in Eq. (6) may vary according to the altitude of the 

target. Thus β and ρ can be estimated and calculated using 

intricate numerical formulae (Regan 1984). A parameter γ 

can thus be defined as:

	 (10)

Here, ρ is modeled by the relation as in Eq. (6) and β is 

approximated by a linear function model of the altitude h 

(Bar-Shalom et al. 2001) as follows:

	 (11)

Through combining Eqs. (6, 10, 11) and taking the first 

derivative of γ, we obtain:

	 (12)

3.2.2 State Equations of the GA Filter

The state equation of the GA filter is as:

	 (13)

whereas,

	 (14)

	 (15)

	 (16)

Furthermore,

	 (17)

	 (18)

	 (19)

	 (20)

where  was obtained from Eq. (12).

3.3 The GB Filter

The GB filter by acceleration and jerk models was 

proposed in (Ghosh & Mukhopadhyay 2011). The GB filter 

handles ballistic coefficient β through gamma estimation 

similarly to the GA filter, but it uses a particular method of 

bootstrapping. To implement such bootstrapping, the GB 

filter is divided into two parts, being a main filter and sub-

filter as described in Fig. 3.

The main filter is used to estimate the kinematic 

information including target position, velocity and 

acceleration while the sub-filter estimates γ  and γ4 . The 

estimated results from the separated sub-filter are then 

bootstrapped into the main filter. Ghosh & Mukhopadhyay 

(2011) introduced two models of acceleration and jerk for 

the GB filter and presented that the GB filter had better 

tracking performance than the GA filter. However, the 

jerk model may adversely affect the estimates of other 

Fig. 2. Gamma augmented filter method. EKF: extended Kalman filter.
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parameters, such as position, velocity, acceleration and jerk, 

if the rate of change of jerk is not estimated accurately. Thus, 

we adopt only the acceleration model filter to compare its 

performance with the other filters.

3.3.1 GB Main Filter State Equations

The GB main filter estimates the target position, velocity, 

and acceleration by modeling and integrating jerk terms. 

The gravity, drag and Coriolis force are taken into account in 

the model states. The state equation of the main filter is as 

follows:

	 (21)

Hereas:

	 (22)

	 (23)

	 (24)

Furthermore:

	 (25)

	 (26)

	 (27)

	 (28)

Here, ,  which are estimated in the sub-filter are bootstrapped 

into the main filter and λ is the latitude of the tracking radar’s 

position. We used the EKF for non-linear estimation. The 

linearized state transition matrix, Фk , is required for error 

covariance propagation. This is the Jacobian matrix of Eq. 

(23) with respect to Xgb as follows:

	 (29)

whereas the updated value of  at time k is used.

3.3.2 GB Sub Filter

3.3.2.1 Measurement Equations of Sub Filter

At the prediction step, the states γ  , γ4  are predicted in the 

sub filter and are expressed as . At the update 

step, the states in the sub-filter are updated by the pseudo 

measurements γ c , which are computed using the magnitude 

of the drag acceleration measurements D as calculated in 

the main filter. The updated estimate  is used 

at the prediction step in the main filter. The following 

equations describe the pseudo measurements γ c and the 

measured drag acceleration D. From Eq. (4) we can derive 

the following:

	 (30)

whereas:

	 (31)

	 (32)

	 (33)

	 (34)

3.3.2.2 State Equations of Sub Filter

Assuming that γ4  is a constant with additive white 

Gaussian noise, we can adopt the KF algorithm. Thus the GB 

sub-filter can be derived through a constant velocity model 

as a quadratic form:

	 (35)

Fig. 3. Gamma bootstrapped filter method.
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The state variables are updated using the pseudo 

measurements as in Eq. (30).

	 (36)

whereas  is the measurement noise assumed to be 

white Gaussian. The measurement noise covariance  

of the sub-filter is computed using the Jacobian matrix .

	 (37)

Whereas:

	 (38)

3.4 The Ballistic Coefficient Model Based IMM Filter

The IMM filter (Blom & Bar-Shalom 1988), which 

combines probabilistically the estimated variables from 

multiple dynamic models is well known as an algorithm that 

has similar computation load with the generalized Pseudo 

Bayesian approach of the first order (GPB1) (Bar-Shalom et 

al. 2001) and has estimation accuracy with the generalized 

Pseudo Bayesian approach of the second order (GPB2) (Bar-

Shalom et al. 2001). In this section, we introduce the IMM-

EKF algorithm and derive the state equations of β-IMM-

EKF. We also designed various β according to hypotheses or 

modes to verify the tracking performance of this filter.

3.4.1 The IMM-EKF Algorithm

A distinct feature of the IMM filter algorithm is the 

combination process where the estimated mean and 

covariance are produced through the computation of mode 

probabilities. Mode probability means the probability where 

each filter dynamic model matches the target dynamic 

model. The process noises , which mean the uncertainties 

of a dynamic model, are white Gaussian noises with a zero 

mean and a covariance of . The IMM filter algorithm is 

composed of the steps of interaction, prediction, update, 

and combination which are derived under Bayes’ rule. The 

flow of probability density of each step is represented in the 

following Fig. 4.

3.4.1.1 Interaction

At the interaction step as in Fig. 4 the estimated mean 

and error covariance are obtained by the conditional 

probability density function (CPDF), , which 

is computed using the transition probabilities of each 

hypothesis as in the following:

	 (39)

	 (40)

Here, the mode probability  and the state transition 

probability  from mode j to mode i are defined as follows:

	 (41)

	 (42)

3.4.1.2 Prediction

At the prediction step as in Fig. 4, the predicted state 

and error covariance of  is calculated as the 

manner of EKF:

	 (43)

	 (44)

whereas:

	 (45)

Here  is the Jacobian matrix that uses partial derivatives 

of the non-linear function in Eq. (57) with respect to X.

3.4.1.3 Update

At the update step in Fig. 4, the estimate and error 

covariance of  are calculated as EKF:

	 (46)

Fig. 4. A flow chart of probability density.
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	 (47)

whereas:

	 (48)

	 (49)

	 (50)

Mode probability , which means the probability of the 

hypothesis  is true, can be calculated as follows:

	 (51)

Here the likelihood function, , is calculated 

using measuring residual  and innovation 

covariance  as follows through the condition of linear 

Gaussian.

	 (52)

Here, n is chosen as 3 for the dimension of the system.

3.4.1.4 Combination

At the combination step, one combined estimate and 

error covariance are computed with the estimates , the 

error covariance , and the each mode probabilities 

, which are obtained from the multiple modes 

according to the Gaussian mixture model as follows: 

	 (53)

	 (54)

3.4.2 The Ballistic Coefficient Model based IMM-EKF

In this paper we propose the β-IMM-EKF, which tracks 

a non-linear system such as an RV, with modeling of the 

Markov chain for N-hypotheses. This algorithm is to be 

compared with GA and GB filter algorithms for tracking 

performance. The dynamic model for β-IMM-EKF is 

designed as follows:

	 (55)

whereas:

	 (56)

	 (57)

	 (58)

Hereas:

	 (59)

	 (60)

	 (61)

Here, i means the i-th hypothesis of the i-th mode target 

dynamic model.  Each model has different ballistic 

coefficients in different modes. Thus the β term in Eqs. (59) 

through (61) for β-IMM-EKF should be seen instead of γ as 

in Eq. (10), which is used in either the GA or GB filter.

3.4.3 Modeling of β

The tracking performance of β-IMM-EKF depends on 

how well the multiple β models are selected, and this might 

be a demerit of the IMM-EKF algorithm. In other words, 

without knowledge of the area of the model parameters 

to be estimated, it may produce poor performance when 

applying the IMM filter algorithm for tracking. In our 

application, however, it can be assumed that the vicinity 

of true β values is known in advance as the true RV model 

was selected from a known space launch vehicle (SLV). 

Generally, the ballistic coefficients of the SLV are the factors 

to be obtained from the design and development phase of 

the vehicle. This means that the major ballistic coefficients 

are in accordance with the different flight stages for an SLV 

and are known prior to launch. Even though the exterior 

shape of the vehicle changes owing to the abnormal 

conditions during flight, β values can be expected to have a 

neighboring range in their predetermined values. Thus the 

β-IMM-EKF algorithm can be used in this application.

Fig. 5 shows the true β and γ of the nominal trajectory. 

In Fig. 5a the range of true β value is about 750-1,320 kg/

m2, which were acquired by computer simulations during 
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the flight range from 300 seconds to 482 seconds. Fig. 5b 

shows the gamma variation through the computation of (10) 

with the corresponding β. In this paper, the performance 

comparison of β-IMM-EKF with the GA or GB filter is 

executed with respect to the parameter γ. The gamma value 

can be easily calculated with the estimated β using Eqs. (6) 

and (10). We can observe that γ has a significant rise from 

approximately 400 seconds; likewise, β also shows a rapid 

change at that time. This occurs due to the influence of a 

rapid increase in air density according to the close approach 

of an RV to the surface of the earth. 

In Table 2, we selected three hypotheses or modes 

since the variation of the β value in Fig. 5a is not very wide 

from the minimum to maximum values, and since the 

computation time can be shortened by small numbers of β 

models. Thus we designed three ballistic coefficient models 

with the values of 800, 1,200, and 1,600 kg/m2 respectively 

for the three hypotheses based on the range of true β as in 

Fig. 5a.

Fig. 6 shows the change of mode probabilities at each 

mode after tracking simulation for the true RV model. 

Since observability is not built, three modes have the same 

averaged values until approximately 350 seconds of flight 

time. Considering the entire flight during the re-entry phase, 

the mode probabilities begin to actively change after about 

350 seconds when observability is formed. Thus, after about 

350 seconds, each mode has its own variations of probability 

according to the flight conditions which are related with Eq. (5).

From approximately 380 to 420 seconds, the probability 

of Mode 2 rises to about 0.6 while that of Mode 1 and 3 have 

0.25 and 0.15 each. From 420 to 440 seconds, the probability 

of Mode 1 rises to about 0.7. After about 450 seconds, the 

probability of Mode 3 rises to about 0.5 until the RV impacts 

the surface of the earth. 

4. SIMULATION RESULTS

4.1 True Trajectory of an RV

For the true trajectory of an RV, the specifications of a 

small low earth orbit satellite launch vehicle, the Korea 

SLV-I (KSLV-I), was used in the computer simulation. The 

true target trajectory assumes that the vehicle is safely 

launched at first. The predetermined thrust duration is 230 

seconds but the thrust is assumed to be cut off due to an 

abnormal condition at Lift-off+170 seconds. Then the RV 

enters the coast phase. For simple analysis, the conditions 

of body tumbling or splitting of the RV are not considered. 

The launch point is set at longitude 126 degrees east and 

latitude 34 degrees north. The launch direction is 170 

degrees from the North Pole. The results are 482 seconds of 

total flight time, 427 km of down range, and 113 km at the 

highest altitude for the nominal trajectory. The radar station 

for tracking is located at longitude 127 degrees east, latitude 

19 degrees north. The skin mode tracking begins at Lift-

off+190 seconds when the relative distance between target 

and radar is about 1,594 km. The tracking filter receives 

measurements from the sensor at a 16 Hz cycle in the form 

of range, elevation, and azimuth (r,θ,ψ) in polar coordinates. 

The measurement noise is white Gaussian with standard 

deviation (25 m, 0.05 deg, 0.05 deg). Figs. 7a-c represents 

the true target trajectory with respect to the East, North, and 

Up axes, respectively. The trajectory was generated in the 

Fig. 5. True beta and gamma.

(a) Variation of the ballistic coefficient   (b) Variation of gamma

Table 2. Design of ballistic coefficients.

Hypothesis β (kg/m2)

M1 800

M2 1,200

M3 1,600

Fig. 6. Mode probability from simulations.
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radar ENU-CS after proper coordinate transformations were 

performed from the ENU-CS referenced at the launch point. 

The entire trajectory is represented by the solid black line, 

and the tracking interval is expressed by the scattered red 

circles on the trajectory.

4.2 Comparison of Root Mean Square Error

Fig. 8 shows the estimation root mean square error 

(RMSE) in terms of position, velocity and γ  for each 

algorithm. In Figs. 8a and b, the position and velocity of 

RMSE, both the β-IMM-EKF and GA filter generally has 

better estimation performance than the GB filter during 

the tracking time from 190 seconds to 482 seconds. The GB 

filter cannot reduce errors less than about 190m of position 

and 30 m/s of velocity, whereas the GA filter maintained 

an error trend similar to that of the β-IMM-EKF until about 

420 seconds. In the enlarged section of Figs. 8a and b 

from 400 to 500 seconds, the GA filter shows a rapid wave 

of position error up to 240 m at 420 seconds and twice 

oscillations of its velocity error occurred from about 0 to 18 

m/s. This result is because the GA filter cannot follow the 

fast change of γ related to the ballistic coefficient and air 

density according to Fig. 5 and Eq. (6). In the case of the GB 

filter, the estimation of jerk terms as in Eq. (23) has a vital 

influence on overall system performance, but an accurate 

estimation of jerk terms, as derivatives of acceleration 

terms, seems not to be completely achieved. This means 

that the GB filter shows limitations in comparison of that of 

the β-IMM-EKF or GA filter. Thus, the β-IMM-EKF achieved 

a stable and more accurate result than both the GA and 

GB filter. In Fig. 8c of gamma RMSE, three models of GA, 

GB, and β-IMM-EKF show good performance until 400 

seconds. This result comes from very low air density by 

Eq. (6). However, in the enlarged section of Fig. 8c, the GB 

filter shows the largest error in the results after about 440 

seconds amongst the three filters since it does not obtain 

full estimation performance due to the jerk terms. Between 

the GA filter and β-IMM-EKF, the GA filter shows a smaller 

number of errors at some parts than the β-IMM-EKF from 

about 430 to 475 seconds. But the error trend of the GA filter 

is unstable with oscillation, while that of the β-IMM-EKF 

is stable. Overall, the β-IMM-EKF has more improved and 

stable performance than that of the other two filters.

Fig. 6. Mode probability from simulations. Fig. 7. True trajectory of a re-entry vehicle.

(a) East axis (b) North axis (c) Up axis

Fig. 8. The result of root mean square error (RMSE).

(a) Position RMSE (b) Velocity RMSE (c) Gamma RMSE
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4.3 Comparison of Run Time

Table 3 shows the processing time per scan for each 

algorithm based on our simulation environments. As for the 

run time speed per one scan, the GA filter proved to be the 

fastest. This result can be expected regarding the dimensions 

of each filter. As described, the state equations in Sections 

3.2-3.4, the dimension of the GA filter is 7 whereas that of 

the GB filter is 9 and that of the β-IMM-EKF is 18. Thus the 

complexity of the β-IMM-EKF is the highest. The GB filter 

actually requires considerable computation of the Jacobian 

matrix when its sub-filter also works to calculate pseudo 

measurements. The complexity of the β-IMM-EKF depends 

on the number of models. Since we propose three models 

of the β-IMM-EKF in this paper, it has three times the 

complexity of each 6-dimension EKF.

The run time results represent that it seems to be 

approximately proportional to the dimensions. That is, 

the GA filter is somewhat faster than that of the GB filter, 

but rather had similar results since the difference is only 

2 dimensions between the two. The run time results of the 

β-IMM-EKF showed almost 3 times more than that of the 

GA filter as its dimension is 3 times larger. Judging from the 

results, β-IMM-EKF is the slowest but the differences are 

insignificant, being 0.021 to 0.327 msec among the 3 filters. 

Thus all 3 filters are applicable for real time tracking.

4.4 Comparison of IPP

The comparisons of IPP are conducted at 5 points. These 

are the points at 350 and 400 seconds where drag has a 

small effect due to light air density; and the points at 425 

and 450 seconds where drag has a significant effect at less 

than approximately 35 km altitude. Only the prediction step 

for each filter is performed without measurements. Lastly, 

the impact point is shown through full tracking from 190 to 

482 seconds. 

Fig. 9 shows the results of the predicted impact points 

obtained from each starting time by performing 100 Monte 

Carlo runs for each algorithm. In Figs. 9a and b, both the 

GA and GB filter show an error radius up to about 15 km 

around the true impact point while the β-IMM-EKF shows 

less than a few kilometers. This means that observability for 

the GA or GB filter is not attained sufficiently at about 100 

km altitude of the RV prior to prediction beginning, while 

β-IMM-EKF has better results than the others owing to the 

selection of proper modeling. In Figs. 9c, and d, the GA and 

GB filter was closer to the true IPP. This is due to the rising of 

observability to estimate how γ is formed. Here the tracking 

performance starts to influence the accuracy of the IPP. In 

Fig. 9e the results of the final IPPs are shown through the 

full tracking of each filter. Though all the filters showed good 

results of IPP around the true at less than 1km, β-IMM-EKF 

still showed better results than either the GA or GB filter. As 

a result in Figs. 9a-e, β-IMM-EKF shows noticeably better 

prediction performance amongst the 3 filters.

Table 4 shows the values of circular error probable (CEP) 

based on the results of the IPPs for the three algorithms. The 

CEPs are computed by mean square error between the true 

impact point (TIP) and the predicted impact point (PIP) 

of the target. Each value represents the maximum radius 

from TIP as the center of the circle where the 50% of PIPs 

are located. In all cases, we can find that the β-IMM-EKF 

showed the best results against the others.

5. CONCLUSIONS

A comparative assessment of tracking performance and 

IPP of an RV has been performed for the GA filter, GB filter, 

and the proposed β-IMM-EKF, which are ballistic coefficient 

model based algorithms. To verify practical performance 

of tracking, the RV model has been applied with actual 

specifications of a space launch vehicle. With this RV model 

as a true target, the tracking and IPPs through Monte Carlo 

simulations were performed for those three algorithms.

Concerning the RMSE of position, velocity and gamma, 

the β-IMM-EKF produced the best tracking performance 

amongst the 3 filters. Comparing the results between the 

GA filter and β-IMM-EKF, both showed a very similar 

Table 3. Comparison of run time per scan. 

Algorithm Run time/scana (msec)

GA filter 0.187

GB filter 0.209

β-IMM-EKF 0.559

GA: gamma augmented, GB: gamma bootstrapped, 
β-IMM-EKF: coefficient β model-based interacting 
multiple model-extended Kalman filter.
ai5-2,500 K CPU 3.30 GHz, RAM 8.00 GB, Microsoft 
Visual Studio 2010 (C++).

Table 4. Comparison of CEP.

IPP start time (sec)
350 400 425 450 482

Fig. 9a Fig. 9b Fig. 9c Fig. 9d Fig. 9e

CEP
(km)

β-IMM-EKF 0.990 0.940 0.342 0.069 0.020

GB 8.919 7.850 1.285 0.314 0.098

GA 7.415 7.745 1.585 0.160 0.024

CEP: circular error probable, IPP: impact point prediction, GA: gamma 
augmented, GB: gamma bootstrapped, β-IMM-EKF: coefficient β 
model-based interacting multiple model-extended Kalman filter.
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equivalent performance during certain sections. However, 

some unstable oscillations appeared in the GA filter while 

no oscillations in occurred in the β-IMM-EKF when the RV 

approached the surface of the earth.

Concerning the IPP, β-IMM-EKF still showed the best 

results among the 3 filters. The IPP was performed without 

measurement updates for five cases. At an altitude of about 

100 km, the GA and GB filter both have larger prediction 

errors than the β-IMM-EKF since observability was not 

attained. When the influence of air density increases and 

observability is acquired from approximately 35 km altitude, 

the predicted impact points of the GA or GB filter started 

to point closer to the true impact point. But in any case, the 

β-IMM-EKF had better performance than the other two. 

Thus IPP after β-IMM-EKF tracking is more confident and 

less affected by the altitude of an RV.

Concerning the algorithm execution time per scan, 

the GA filter was the fastest whereas the β-IMM-EKF was 

the slowest. This result was expected due to the smaller 

dimension of the GA filter than the others. However, this 

does not mean that either the GB filter or β-IMM-EKF is 

inapplicable to a real environment. As identified in Table 3, 

the maximum differences amongst the three filters are less 

than 1 msec. Thus any of the 3 filters in real time are able 

to be used in real tracking. Moreover, the run time per scan 

also depends on the capability of the computer.

In conclusion, the proposed β-IMM-EKF showed better 

performance than the other two filters in comparison of 

RMSE and IPP. In regards to the run time per scan, such 

is minor since the difference between the filters is quite 

small. As discussed in Subsection 3.4.3, β-IMM-EKF can 

offer stable and good tracking performance through proper 

modeling of β. Thus, if the pre-determined range of the 

ballistic coefficients is known, it can be expected that it 

is able to design a distinguished good estimator with the 

β-IMM-EKF for applications of precise tracking of an RV.
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Fig. 9. The results of impact point prediction (IPP).

(d) IPP at 450 sec (e) IPP at 482 sec

(a) IPP at 350 sec (b) IPP at 400 sec (c) IPP at 425 sec

Table 4. Comparison of CEP.

IPP start time (sec)
350 400 425 450 482

Fig. 9a Fig. 9b Fig. 9c Fig. 9d Fig. 9e

CEP
(km)

β-IMM-EKF 0.990 0.940 0.342 0.069 0.020

GB 8.919 7.850 1.285 0.314 0.098

GA 7.415 7.745 1.585 0.160 0.024

CEP: circular error probable, IPP: impact point prediction, GA: gamma 
augmented, GB: gamma bootstrapped, β-IMM-EKF: coefficient β 
model-based interacting multiple model-extended Kalman filter.
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