• 제목/요약/키워드: Multiple theorem

검색결과 107건 처리시간 0.021초

MULTIPLE POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS WITH IMPULSE

  • Song, Xiaohua;Zhao, Zengqin;Wang, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.875-883
    • /
    • 2009
  • At least two positive solutions of a first-order periodic boundary value problem with impulse are obtained by establishing a new cone and the theorem of fixed point index. And at the end of this paper we give an example to illustrate the application of our main results.

  • PDF

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • 제53권2호
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

이동로봇의 장애물 회피를 위한 복소 포텐셜 항법의 개선 (Enhancement of Complex Potential Navigation Method for Obstacle Avoidance of Mobile Robot)

  • 김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.385-389
    • /
    • 2009
  • This paper deals with the enhancement of the complex potential navigation for wheeled mobile robots. The circle theorem from complex function theory is used to avoid an obstacle, and the enhancement to avoid multiple obstacles is proposed. The limit cycle navigation can be combined for robot to kick the ball to the intentioned direction. Avoiding step and superposing twin vortices can be applied to adjust the direction of robot's trajectory. The proposed method is verified through a set of simulation works, and the feasibilities for the enhancement of complex potential theory are successful.

ON THE SETS OF LENGTHS OF PUISEUX MONOIDS GENERATED BY MULTIPLE GEOMETRIC SEQUENCES

  • Polo, Harold
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1057-1073
    • /
    • 2020
  • In this paper, we study some of the factorization aspects of rational multicyclic monoids, that is, additive submonoids of the nonnegative rational numbers generated by multiple geometric sequences. In particular, we provide a complete description of the rational multicyclic monoids M that are hereditarily atomic (i.e., every submonoid of M is atomic). Additionally, we show that the sets of lengths of certain rational multicyclic monoids are finite unions of multidimensional arithmetic progressions, while their unions satisfy the Structure Theorem for Unions of Sets of Lengths. Finally, we realize arithmetic progressions as the sets of distances of some additive submonoids of the nonnegative rational numbers.

다중 시간지연을 갖는 불확정성 선형 시스템의 강인 안정성 (Robust Stability of Uncertain Linear Systems with Multiple Time-delayed)

  • 이희송;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.449-451
    • /
    • 1998
  • In this paper, we consider the problem of the robust stability of uncertain linear systems with multiple time-varying delays. The considered uncertainties are both the unstructured uncertainty which is only known its norm bound and the structured uncertainty satisfying the matching conditions, respectively. We present conditions that guarantee the robust stability of systems based on Lyapunov stability theorem and $H_{\infty}$ theory in the time domain. Finally, we show the usefulness of our results by numerical examples.

  • PDF

미지의 미끄러짐을 고려한 비홀로노믹 다개체 이동 로봇의 적응 군집 제어 (Adaptive Formation Control of Nonholonomic Multiple Mobile Robots Considering Unknown Slippage)

  • 최윤호;유성진
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.5-11
    • /
    • 2010
  • An adaptive formation control approach is proposed for nonhonolomic multiple mobile robots considering unknown slipping and skidding. It is assumed that unknown slipping and skidding effects are bounded by unknown constants. Under this assumption, the adaptive technique is employed to estimate the bounds of unknown slipping and skidding effects of each mobile robot. To deal with the skidding effect included in kinematics, the dynamic surface design approach is applied to design a local controller for each mobile robot. Using Lyapunov stability theorem, the adaptation laws for tuning bounds of slipping and skidding are induced and it is proved that all signals of the closed-loop system are bounded and the tracking errors and the synchronization errors of the path parameters converge to an adjustable neighborhood of the origin. Finally, simulation results are provided to verify the effectiveness of the proposed approach.

EVALUATION OF DIAGNOSTIC TESTS WITH MULTIPLE DIAGNOSTIC CATEGORIES

  • Birkett N.J.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(역학)
    • /
    • pp.154-157
    • /
    • 1994
  • The evaluation of diagnostic tests attempts to obtain one or more statistical parameters which can indicate the intrinsic diagnostic utility of a test. Sensitivity. specificity and predictive value are not appropriate for this use. The likelihood ratio has been proposed as a useful measure when using a test to diagnose one of two disease states (e.g. disease present or absent). In this paper, we generalize the likelihood ratio concept to a situation in which the goal is to diagnose one of several non-overlapping disease states. A formula is derived to determine the post-test probability of a specific disease state. The post-test odds are shown to be related to the pre-test odds of a disease and to the usual likelihood ratios derived from considering the diagnosis between the target diagnosis and each alternate in turn. Hence, likelihood ratios derived from comparing pairs of diseases can be used to determine test utility in a multiple disease diagnostic situation.

  • PDF

MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH

  • Liu, Yang
    • 대한수학회지
    • /
    • 제59권5호
    • /
    • pp.911-926
    • /
    • 2022
  • Let u be a function on a locally finite graph G = (V, E) and Ω be a bounded subset of V. Let 𝜀 > 0, p > 2 and 0 ≤ λ < λ1(Ω) be constants, where λ1(Ω) is the first eigenvalue of the discrete Laplacian, and h : V → ℝ be a function satisfying h ≥ 0 and $h{\not\equiv}0$. We consider a perturbed Yamabe equation, say $$\{\begin{array}{lll}-{\Delta}u-{\lambda}u={\mid}u{\mid}^{p-2}u+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω and ∂Ω denote the interior and the boundary of Ω, respectively. Using variational methods, we prove that there exists some positive constant 𝜀0 > 0 such that for all 𝜀 ∈ (0, 𝜀0), the above equation has two distinct solutions. Moreover, we consider a more general nonlinear equation $$\{\begin{array}{lll}-{\Delta}u=f(u)+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ and prove similar result for certain nonlinear term f(u).

삼연모먼트정리의 매트릭스산법에 의한 박용추진축계 배치계산에 관한 연구 (A Study on the Propulsion Shaft Alignment Calculation by the Matrix Method of Three-Moment Theory)

  • 문덕홍;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.20-27
    • /
    • 1981
  • The alignment of propulsion shaft systems by the fair curve method has been developed over the past twenty years and in recent years its basic problems have been almost solved. At the present time, studies on introducing actual conditions are being undertaken. In a fair curve alignment, its aim is to achieve a stable shaft system which will be relatively insensitive to misalignment or the influence of external factors such as thermal variations due to the sunshine, speed change, etc. The key point of fair curve alignment is the calculations of reactions in the straight support and reaction influence numbers. The present authors have developed those calculating method by the matrix method of the three-moment theorem. The fair curve alignment is based on the analysis of propulsion shaft system which is assumed as a continous beam on multiple support points. The propeller shaft is divided into several elements. For each element, the nodal point equation is derived by the three-moment theorem. Reaction of supporting points of straight shaft and reaction influence numbers are calculated by the matrix calculation of each nodal point equation. It has been found that results of calculation for the model shaft agree well with those of experiment which had been measured by the strain gauge method. Results of calculation for the actual propulsion shafting of the steam turbine had been compared also with those of Det norske Vertas.

  • PDF

APPELL'S FUNCTION F1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X9

  • Choi, Junesang;Rathie, Arjun K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권1호
    • /
    • pp.37-50
    • /
    • 2013
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function $F_1$: $$(1+2x)^{-a}(1+2z)^{-b}F_1\;\(c,\;a,\;b;\;2c+j;\;\frac{4x}{1+2x},\;\frac{4z}{1+2z}\)\;(j=0,\;{\pm}1,\;{\ldots},\;{\pm}5)$$ in terms of Exton's triple hypergeometric $X_9$. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.