• 제목/요약/키워드: Multiple sound source

검색결과 84건 처리시간 0.028초

A Method to Manipulate Sound Power within a Selected Region Using Source Array (스피커 어레이를 사용한 공간의 음향 파워 제어 방법)

  • 최정우;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.278-281
    • /
    • 2004
  • Multiple sound sources are controlled to enhance sound power within a zone of interest. The problem of enhancing acoustic variable can be regarded as an optimization problem, which seeks an optimal control input that maximizes the acoustic variable. It should be noted that enhancing sound power of a selected region requires both the magnitude and direction to be controlled. For this reason, two kinds of cost functions that can represent the spatially distributed intensity are defined. Theoretical formulation shows the possibility of sound power control in a zone, and the detailed procedures of the proposed method are validated by numerical simulations.

  • PDF

An Adjacency Effect in Auditory Distance and Loudness Judgments

  • Min, Yoon-Ki;Lee, Kanghee
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권3E호
    • /
    • pp.33-39
    • /
    • 2000
  • This study investigated whether the adjacency principle. demonstrated in a perceived visual space, can be applied to auditory space. In order to demonstrate an auditory adjacency principle, multiple sound sources were varied in direction and distance in an acoustically absorbant space. Specifically, a NEAR sound source was located 10° to the left of the listener's midline at a distance of 2 meters; a FAR sound source was located 10° to the right at a distance of 5 meters. These sources served as perceptual reference points with respect to the localization of three test sounds, all at a distance of 3 meters. Two of three test sounds were directionally closer to the NEAR and FAR reference sounds, respectively. The other was between the reference sources directionally. The listener was asked to judge the perceived distances and the loudness of the three test sounds and the two reference sounds. The results indicated that the apparent distances of the test sounds were most determined by the disparity of distance between each test sound and the reference sound most directionally adjacent to it. Therefore, the findings offer evidence that the adjacency principle can be applied to the auditory space.

  • PDF

Amplitude Panning Algorithm for Virtual Sound Source Rendering in the Multichannel Loudspeaker System (다채널 스피커 환경에서 가상 음원을 생성하기 위한 레벨 패닝 알고리즘)

  • Jeon, Se-Woon;Park, Young-Cheol;Lee, Seok-Pil;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • 제30권4호
    • /
    • pp.197-206
    • /
    • 2011
  • In this paper, we proposes the virtual sound source panning algorithm in the multichannel system. Recently, High-definition (HD) and Ultrahigh-definition (UHD) video formats are accepted for the multimedia applications and they provide the high-quality resolution pixels and the wider view angle. The audio format also needs to generate the wider sound field and more immersive sound effects. However, the conventional stereo system cannot satisfy the desired sound quality in the latest multimedia system. Therefore, the various multichannel systems that can make more improved sound field generation are proposed. In the mutichannel system, the conventional panning algorithms have acoustic problems about directivity and timbre of the virtual sound source. To solve these problems in the arbitrary positioned multichannel loudspeaker system, we proposed the virtual sound source panning algorithm using multiple vectors base nonnegative amplitude panning gains. The proposed algorithm can be easily controlled by the gain control function to generate an accurate localization of the virtual sound source and also it is available for the both symmetric and asymmetric loudspeakers format. Its performance of sound localization is evaluated by subjective tests comparing with conventional amplitude panning algorithms, e.g. VBAP and MDAP, in the symmetric and asymmetric formats.

Source Identification of Non-Stationary Sound.Vibration Signals Using Multi-Dimensional Spectral Analysis Method (다차원 스펙트럼 해석법을 이용한 비정상 소음.진동 신호의 소음원 규명)

  • Sim, Hyoun-Jin;Lee, Hae-Jin;Lee, You-Yub;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제30권9호
    • /
    • pp.1154-1159
    • /
    • 2006
  • In this paper, time-frequency analysis and multi-dimensional spectral analysis methods are applied to source identification and diagnostic of non-stationary sound vibration signals. By checking the coherences for concerned time, this simulation is very well coincident to expected results. The proposed method analyzes the signal instantaneously in both time and frequency domains. The MDSA (Multiple Dimensional Spectral Analysis) analyzes the signal in the plane of instantaneous time and instantaneous frequency at the same time. And it was verified by using the 1500cc passenger car which is accelerated from 70Hz to 95Hz in 4 seconds, the proposed method is effective in determining the vehicle diagnostic problems.

Sound Propagation over Multiple Wedges and Barriers

  • Kim, Hyun-Sil;Kim, Jae-Sueng;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권2E호
    • /
    • pp.44-50
    • /
    • 2004
  • A theoretical formula that is based on the geometrical theory of diffraction (GTD) is proposed for computing sound diffraction by multiple wedges, barriers, and polygonal-like shapes. The formula can treat both convex and concave edges, where edges mayor may not be inter-connected. Comparisons of theoretical predictions with other results done by the BEM or experiments for scaled model confirm the accuracy of the present formula. Numerical examples such as double wedges and doubly inclined barrier show that when there exist several diffraction paths for given source and receiver positions, the insertion loss is dominated by the diffraction associated with the shortest propagation path.

The Development and Application of Sound Quality Index for the Improving Luxury Sound Quality of Road Vehicle Power Window System (차량 윈도우 리프트 음질 고급감 향상을 위한 음질 지수 제작 및 개선에의 응용)

  • Kim, Seonghyeon;Park, Dong Chul;Jo, Hyeonho;Sung, Weonchan;Kang, Yeon June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제24권2호
    • /
    • pp.108-116
    • /
    • 2014
  • With the increasing the importance of emotional quality of vehicle, the sound quality of systems with electric motor components has become increasingly important. Electric motors are used for windows, seats, sun roof, mirrors, steering columns, windshield wiper and climate control blowers, etc. In this paper, a study was conducted to identify sound quality factors that contribute to customer's satisfaction and preference of the window lift system. Jury test for subjective evaluation was carried out and sound quality index was developed. Averaged sound pressure level and sharpness were significant factors when glass moves down. Also, maximum loudness at stop section and averaged loudness were significant factor when glass moves up. Next, noise source identification was carried out using beam forming method during glass transferred section and impulsive noise at stop section. Several improvement methods were applied using the source identification result. And finally, the degree of sound quality improvement was judged using sound quality index.

Development of Sound Quality Index with Characterization of BSR Noise in a Vehicle (자동차 BSR 소음특성과 음질 인덱스 개발)

  • Shin, Su-Hyun;Kim, Duck-Whan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.447-452
    • /
    • 2012
  • Among the various elements affecting a customer's evaluation of automobile quality, buzz, squeak and rattle (BSR) are considered to be major factors. In most vehicle manufacturers, the BSR problems are solved by find-fix method with the vehicle road test, mainly due to various excitation sources, complex generation mechanism and subjective response. The aim of this paper is to develop the integrated experimental method to systematically tackle the BSR problems in early stage of the vehicle development cycle by resolving these difficulties. To achieve this aim, the developed experimental method ought to include the following requirements: to find and fix the BSR problem for modules instead of a full vehicle in order to tackle the problem in the early stage of the vehicle development cycle; to develop the exciter system including the zig and road-input-signal reproducing algorithm; to automatically localize the source region of BSR; to develop sound quality index that can be used to assess the subjective responses to BSR. Also, the BSR sound quality indexes based on the Zwicker's sound quality parameters using a multiple regression analysis. The four sound metrics from Zwicker's sound quality parameter are computed for the signals recorded for eight BSR noise source regions localized by using the acoustic-field visualized results. Then, the jury test of BSR noise are performed for participants. On a basis of the computed sound metrics and jury test result, sound quality index is developed to represent the harsh of BSR noise. It is expected that the developed BSR detection system and sound quality indexes can be used to reduce the automotive interior BSR noise in terms of subjective levels as well as objective levels.

  • PDF

Spatial Manipulation of Sound using Multiple Sources (다수의 음원을 사용한 공간의 소리 제어 방법론)

  • Choi, Joung-Woo;Kim, Yang-Hann;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.620-628
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments, the quality of sound can not be manifested over every position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

  • PDF

Ring-shaped Sound Focusing using Wavenumber Domain Matching (파수영역매칭을 통한 링 형상의 음향집적공간 형성)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.506-509
    • /
    • 2006
  • Shaped Sound Focusing is defined as the generation of acoustically bright shape in space using multiple sources. The acoustically bright shape is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustical focusing is essential because acoustic energy is very small to use other type of energy. Practically, focused sound shape control not a point is meaningful because there are so many needs to enlarge the focal region especially in clinical uses and others. If focused sound shape can be controlled, it offers various kinds of solutions for clinical uses and others because a regional focusing is essentially needed to reduce a treatment time and enhance the performance of transducers. For making the shaped-sound field, control variables, such as a number of sources, excitation frequency, source positioning, etc., should be taken according to geometrical sound shape. To verify these relations between them, wavenumber domain matching method is suggested because wavenumber spectrum can provide the information of control variables of sources. In this paper, the procedures of shaped sound focusing using wavenumber domain matching and relations between control variables and geometrical sound shape are covered in case of an acoustical ring.

  • PDF

A Unified Theory of Spatial Sound and Vibration Control with Multiple Sources (음향 및 진동장의 형상을 제어하는 다양한 방법)

  • Kim, Yang-Hann;Choi, Joung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.126-132
    • /
    • 2006
  • In this paper, we aim to control the sound and vibration spatially, so that a desired physical variable is enhanced within a zone we select. This is somewhat analogous to have manipulators that can draw wave shape in any place we want. Brightness and contrast control have shown that such a manipulation is possible by controlling multiple sources[J.-W. Choi and Y.-H. Kim, J. Acoust. Soc. Am. 111(4), 2002]. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to manipulate spatial distribution of sound by making two different kinds of zone ? the bright and dark zone- at the same time. The primary focus of this study is to unit the theoretical formulation of the brightness and contrast control and to find a link between these methods, as well as its relation to other conventional techniques. It is also shown that we can generate various shape of wave field by transforming the domain we consider.

  • PDF