• Title/Summary/Keyword: Multiple sliding mode control

Search Result 22, Processing Time 0.031 seconds

The performance analysis of multiple sliding mode control (다중 슬라이딩 모드 제어 방법의 성능 평가)

  • Chang, Wook;Joo, Jin-Man;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.658-660
    • /
    • 1995
  • This paper presents a performance analysis of the multiple sliding mode control for SISO system. The multiple sliding mode control technique uses sliding surfaces for each state. The performance analysis is done by comparison between the multiple sliding mode control and the sliding mode control. Overall performance of the multiple sliding mode control is improved over that of the sliding mode control. Results of numerical simulations are presented.

  • PDF

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니퓰레이터를 위한 신경회로망을 이용한 간편 슬라이딩 모드 제어)

  • 박윤명;박양수;최부귀
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.355-355
    • /
    • 2000
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a 개bot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

Leader-Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Nonlinear Disturbance Observer

  • Qian, Dianwei;Tong, Shiwen;Li, Chengdong
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.1008-1018
    • /
    • 2016
  • This paper presents a control scheme for the leader-following formation of multiple robots. The control scheme combines the sliding mode control (SMC) method with the nonlinear disturbance observer (NDOB) technique. The formation dynamics suffer from uncertainties because the individual robots are uncertain. Concerning such formation uncertainties, the leader-following formation dynamics are modeled. Assuming that the formation uncertainties have an unknown boundary, an NDOB-based observer was designed to estimate the formation uncertainties. A sliding surface containing the observer outputs has been defined. Regarding the sliding surface, an SMC-based controller was investigated to form uncertain robots. A sufficient condition in the sense of the Lyapunov theory was proven such that the formation system is asymptotically stable. Herein, some comparison results between the sole SMC method and the second-order SMC method are presented to demonstrate the effectiveness and feasibility of the control scheme for multiple robots in the presence of uncertainties.

Multiple Faults Detection and Isolation via Decentralized Sliding Mode Observer for Reconfigurable Manipulator

  • Zhao, Bo;Li, Chenghao;Ma, Tianhao;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2393-2405
    • /
    • 2015
  • This paper considers a decentralized multiple faults detection and isolation (FDI) scheme for reconfigurable manipulators. Inspired by their modularization property, a global sliding mode (GSM) based stable adaptive fuzzy decentralized controller is investigated for the system in fault free, while for the system suffering from multiple faults (actuator fault and sensor fault), the decentralized sliding mode observer (DSMO) is employed to detect their occurrence. Hereafter, the time and location of faults can be determined by a fault isolation scheme via a bank of DSMOs. Finally, the effectiveness of the proposed schemes in controlling, detecting and isolating faults is illustrated by the simulations of two 3-DOF reconfigurable manipulators with different configurations successfully.

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니플레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어)

  • 박양수;박윤명;최부귀
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a robot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm (적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Ja Ho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

Fuzzy Sliding Mode Observer for Nonlinear System

  • Seo, Sam-Jun;Kim, Dong-Sik;Seo, Ho-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.42.2-42
    • /
    • 2001
  • This paper deals with a fuzzy sliding mode observer for nonlinear systems. A nonlinear system is approximated by a multiple model Takagi Sugeno fuzzy system and then transformed into a canonical form for which a nonlinear observer is constructed. This study presents a type of fuzzy sliding mode observer that deals with matched and unmatched uncertainties in the plant dynamics very effectively. The proposed method was validated by the example of a inverted pendulum.

  • PDF

SLIP CONTROLLER DESIGN FOR TRACTION CONTROL SYSTEM

  • Jung, H.;Kwak, B.;Park, Y.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability even in extreme road conditions, under which average drivers may not control the car properly. Commercial TCSs use experiential methods such as lookup table and gain-scheduling to achieve proper performance under various road and vehicle conditions. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and to get a simple structure, the brake controller and the throttle controller are designed using Lyapunov redesign method and multiple sliding mode control respectively. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve the required acceleration performance. The proposed method is validated with simulations based on 15 DOF passenger car model.

  • PDF

Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law (슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계)

  • Lee, JunKu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.