• Title/Summary/Keyword: Multiple sensors

Search Result 724, Processing Time 0.028 seconds

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF

A Study on UAV Tracking Method with Anti-Jamming Function for Forest Resource Management (산림자원 관리를 위한 항 재밍 기능을 보유한 무인항공기국 추적방법에 관한 연구)

  • Jin-Woo Jung;Yong-Gyu Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1245-1258
    • /
    • 2023
  • To efficiently manage forest resources, it is essential to deploy multiple unmanned aerial vehicles equipped with various sensors simultaneously. Consequently, the ground control station antenna should not only maintain continuous tracking of the target station but also minimize the impact of radio interference on other unmanned aerial vehicle stations. In this paper, we presented beam forming techniques based on the VPR algorithm within a ground control station constructed using a phased array antenna system. Through simulation experiments in diverse unmanned aerial vehicle operating environments, it was demonstrated that the presented method enables not only the continuous tracking of operational unmanned aerial vehicles but also the suppression of radio interference by establishing a continuous pattern null for multiple operational radio interference sources.

A constrained minimization-based scheme against susceptibility of drift angle identification to parameters estimation error from measurements of one floor

  • Kangqian Xu;Akira Mita;Dawei Li;Songtao Xue;Xianzhi Li
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Drift angle is a significant index for diagnosing post-event structures. A common way to estimate this drift response is by using modal parameters identified under natural excitations. Although the modal parameters of shear structures cannot be identified accurately in the real environment, the identification error has little impact on the estimation when measurements from several floors are used. However, the estimation accuracy falls dramatically when there is only one accelerometer. This paper describes the susceptibility of single sensor identification to modelling error and simulations that preliminarily verified this characteristic. To make a robust evaluation from measurements of one floor of shear structures based on imprecisely identified parameters, a novel scheme is devised to approximately correct the mode shapes with respect to fictitious frequencies generated with a genetic algorithm; in particular, the scheme uses constrained minimization to take both the mathematical aspect and the realistic aspect of the mode shapes into account. The algorithm was validated by using a full-scale shear building. The differences between single-sensor and multiple-sensor estimations were analyzed. It was found that, as the number of accelerometers decreases, the error rises due to insufficient data and becomes very high when there is only one sensor. Moreover, when measurements for only one floor are available, the proposed method yields more precise and appropriate mode shapes, leading to a better estimation on the drift angle of the lower floors compared with a method designed for multiple sensors. As well, it is shown that the reduction in space complexity is offset by increasing the computation complexity.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

NEAR-FIELD DILUTION OF ROSETTE TYPE MULTIPORT WASTEWATER DIFFUSERS

  • Seo, Il-Won;Yeo, Hong-Koo
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.93-111
    • /
    • 2002
  • In this paper, mixing characteristics and dilution of the merging buoyant discharges from array of multiple jets has been extensively studied in the hydraulic model experiments. New equations for dilution, which include the merging effects correctly, were derived. Experiments were constructed in a 20-m long, 4.9-m wide and 0.6-m deep flume, and the model diffuser was manufactured to indicate the typical characteristics of the existing ocean wastewater outfall in South Korea. Buoyant discharge from the diffuser was reproduced using heated water. Water temperature was measured using CC-Type thermocouple sensors, which were connected to a 40-channel data logger. Experimental results show that merging between ports in a particular riser is dependent upon the discharge densimetric Froude number, whereas merging between two ports which are facing each other at 90$\circ$ at the adjacent risers is dependent upon the discharge densimetric Froude number and distance from the port and port spacing. Centerline dilution increase with distance from the port outlet until two plumes has merged. However, after merging occurs, increase of the centerline dilution almost stops. Further distance from the position where merging occurs, centerline dilution increases again.

  • PDF

Design of Context-Aware System for Status Monitoring of Semiconductor Equipment (반도체 장비의 상태감시를 위한 상황인지 시스템 설계)

  • Jeon, Min-Ho;Kang, Chul-Gyu;Jeong, Seung-Heui;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.432-438
    • /
    • 2010
  • In this paper, we propose a system which can perceive status of semiconductor equipment and evaluate its performance. The proposed system acquires the information such acceleration, pressure, temperature and gas sensors in the surrounding semiconductor equipment. After acquiring information, it is sent to server through multi hop transmission. The transmitted data generates 3 steps alarm using context-aware algorithm of unit or multiple event. From the experiment's result of the proposed system, we confirm that the reliability and efficiency of information is more improved about 80% than a system that doesn't use context-aware algorithm. Moreover, this system can be effective status monitoring of semiconductor equipment because lots of client nodes acquire surrounding information.

Location Estimation for Multiple Targets Using Expanded DFS Algorithm (확장된 깊이-우선 탐색 알고리듬을 적용한 다중표적 위치 좌표 추정 기법)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1207-1215
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots in consideration of obstacles. In order to match up targets with measured azimuths, to add to the depth-first search (DFS) algorithms in free-obstacle environment, we suggest the expanded DFS (EDS) algorithm including bypass path search, partial path search, middle level ending, and the supplementation of decision metric. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the error rate of estimated location, mean number of calculating nodes, and mean distance between real coordinates and estimated coordinates of the proposed algorithms.

High-$T_c$ SQUID Application for Roll to Roll Metallic Contaminant Detector

  • Tanaka, S.;Kitamura, Y.;Uchida, Y.;Hatsukade, Y.;Ohtani, T.;Suzuki, S.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.82-86
    • /
    • 2012
  • A sensitive eight-channel high-Tc Superconducting Interference Device (SQUID) detection system for magnetic contaminant in a lithium ion battery anode was developed. Finding ultra-small metallic foreign matter is an important issue for a manufacturer because metallic contaminants carry the risk of an internal short. When contamination occurs, the manufacturer of the product suffers a great loss from recalling the tainted product. Metallic particles with outer dimensions smaller than 100 microns cannot be detected using a conventional X-ray imaging system. Therefore, a highly sensitive detection system for small foreign matter is required. We have already developed a detection system based on a single-channel SQUID gradiometer and horizontal magnetization. For practical use, the detection width of the system should be increased to at least 65 mm by employing multiple sensors. In this paper, we present an 8-ch high-Tc SQUID roll-to-roll system for inspecting a lithium-ion battery anode with a width of 65 mm. A special microscopic type of a cryostat was developed upon which eight SQUID gradiometers were mounted. As a result, small iron particles of 35 microns on a real lithium-ion battery anode with a width of 70 mm were successfully detected. This system is practical for the detection of contaminants in a lithium ion battery anode sheet.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF