• Title/Summary/Keyword: Multiple regression model

Search Result 2,523, Processing Time 0.027 seconds

COST PERFORMANCE PREDICTION FOR INTERNATIONAL CONSTRUCTION PROJECTS USING MULTIPLE REGRESSION ANALYSIS AND STRUCTURAL EQUATION MODEL: A COMPARATIVE STUDY

  • D.Y. Kim;S.H. Han;H. Kim;H. Park
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.653-661
    • /
    • 2007
  • Overseas construction projects tend to be more complex than domestic projects, being exposed to more external risks, such as politics, economy, society, and culture, as well as more internal risks from the project itself. It is crucial to have an early understanding of the project condition, in order to be well prepared in various phases of the project. This study compares a structural equation model and multiple regression analysis, in their capacity to predict cost performance of international construction projects. The structural equation model shows a more accurate prediction of cost performance than does regression analysis, due to its intrinsic capability of considering various cost factors in a systematic way.

  • PDF

Predicting a Queue Length Using a Deep Learning Model at Signalized Intersections (딥러닝 모형을 이용한 신호교차로 대기행렬길이 예측)

  • Na, Da-Hyuk;Lee, Sang-Soo;Cho, Keun-Min;Kim, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.26-36
    • /
    • 2021
  • In this study, a deep learning model for predicting the queue length was developed using the information collected from the image detector. Then, a multiple regression analysis model, a statistical technique, was derived and compared using two indices of mean absolute error(MAE) and root mean square error(RMSE). From the results of multiple regression analysis, time, day of the week, occupancy, and bus traffic were found to be statistically significant variables. Occupancy showed the most strong impact on the queue length among the variables. For the optimal deep learning model, 4 hidden layers and 6 lookback were determined, and MAE and RMSE were 6.34 and 8.99. As a result of evaluating the two models, the MAE of the multiple regression model and the deep learning model were 13.65 and 6.44, respectively, and the RMSE were 19.10 and 9.11, respectively. The deep learning model reduced the MAE by 52.8% and the RMSE by 52.3% compared to the multiple regression model.

A Study on the Influence of a Sewage Treatment Plant's Operational Parameters using the Multiple Regression Analysis Model

  • Lee, Seung-Pil;Min, Sang-Yun;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • In this study, the influence of the control and operational parameters within a sewage treatment plant were reviewed by performing multiple regression analysis on the effluent quality of the sewage treatment. The data used for this review are based on the actual data from a sewage treatment plant using the media process within the year 2012. The prediction models of chemical oxygen demand ($COD_{Mn}$) and total nitrogen (T-N) within the effluent of the 2nd settling tank based on the multiple regression analysis yielded the prediction accuracy measurements of 0.93 and 0.84, respectively; and it was concluded that the model was accurately predicting the variances of the actual observed values. If the data on the energy spent on each operating condition can be collected, then the operating parameter that conserves energy without violating the effluent quality standards of COD and T-N can be determined using the regression model and the standardized regression coefficients. These results can provide appropriate operation guidelines to conserve energy to the operators at sewage treatment plants that consume a lot of energy.

TIME SERIES PREDICTION USING INCREMENTAL REGRESSION

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Chai, Duck-Jin;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.635-638
    • /
    • 2006
  • Regression of conventional prediction techniques in data mining uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to time series, the rate of prediction accuracy will be decreased. This paper proposes an incremental regression for time series prediction like typhoon track prediction. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of typhoon track prediction experiment are performed by the proposed technique IMLR(Incremental Multiple Linear Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

  • PDF

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

Forecasting Energy Consumption of Steel Industry Using Regression Model (회귀 모델을 활용한 철강 기업의 에너지 소비 예측)

  • Sung-Ho KANG;Hyun-Ki KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.2
    • /
    • pp.21-25
    • /
    • 2023
  • The purpose of this study was to compare the performance using multiple regression models to predict the energy consumption of steel industry. Specific independent variables were selected in consideration of correlation among various attributes such as CO2 concentration, NSM, Week Status, Day of week, and Load Type, and preprocessing was performed to solve the multicollinearity problem. In data preprocessing, we evaluated linear and nonlinear relationships between each attribute through correlation analysis. In particular, we decided to select variables with high correlation and include appropriate variables in the final model to prevent multicollinearity problems. Among the many regression models learned, Boosted Decision Tree Regression showed the best predictive performance. Ensemble learning in this model was able to effectively learn complex patterns while preventing overfitting by combining multiple decision trees. Consequently, these predictive models are expected to provide important information for improving energy efficiency and management decision-making at steel industry. In the future, we plan to improve the performance of the model by collecting more data and extending variables, and the application of the model considering interactions with external factors will also be considered.

Exact Confidence Intervals on the Regression Coeffcients in Multiple Regression Model with Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.541-548
    • /
    • 1997
  • In regression model with nested error structure interval estimations on regression coefficients in different stages are proposed. Ordinary least square estimators and generalized least square estimators of the regression coefficients in this model are derived for between and within group model. The confidence intervals are dervied by using independent idstributional properties between regression coefficient estimators and quadratic froms obtained from the model.

  • PDF

Development of Energy Consumption Estimation Model Using Multiple Regression Analysis (다중회귀분석을 활용한 하수처리시설 에너지 소비량 예측모델 개발)

  • Shin, Won-Jae;Jung, Yong-Jun;Kim, Ye-Jin
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1443-1450
    • /
    • 2015
  • Wastewater treatment plant(WWTP) has been recognized as a high energy consuming plant. Usually many WWTPs has been operated in the excessive operation conditions in order to maintain stable wastewater treatment. The energy required at WWTPs consists of various subparts such as pumping, aeration, and office maintenance. For management of energy comes from process operation, it can be useful to operators to provide some information about energy variations according to the adjustment of operational variables. In this study, multiple regression analysis was used to establish an energy estimation model. The independent variables for estimation energy were selected among operational variables. The $R^2$ value in the regression analysis appeared 0.68, and performance of the electric power prediction model had less than ${\pm}5%$ error.

Deletion diagnostics in fitting a given regression model to a new observation

  • Kim, Myung Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.231-239
    • /
    • 2016
  • A graphical diagnostic method based on multiple case deletions in a regression context is introduced by using the sampling distribution of the difference between two least squares estimators with and without multiple cases. Principal components analysis plays a key role in deriving this diagnostic method. Multiple case deletions of test statistic are also considered when a new observation is fitted to a given regression model. The result is useful for detecting influential observations in econometric data analysis, for example in checking whether the consumption pattern at a later time is the same as the one found before or not, as well as for investigating the influence of cases in the usual regression model. An illustrative example is given.

Machine learning-based regression analysis for estimating Cerchar abrasivity index

  • Kwak, No-Sang;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.219-228
    • /
    • 2022
  • The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.