• 제목/요약/키워드: Multiple outputs

Search Result 226, Processing Time 0.023 seconds

Multiple Output Charger based on the Novel Time Division Multiple Control Technique (새로운 시분할 다중 제어 기법에 기반한 다중 출력 충전기)

  • Tran, Van-Long;Choi, Woo-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.13-14
    • /
    • 2013
  • Multiple output converters (MOCs) are widely used for applications which require various kinds of the output voltages due to its advantages in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied to the double ended forward converter for the multiple battery charger. Additional benefit of the proposed topology is to require only one secondary winding in the transformer for all the outputs. The proposed converter can charge two different kinds of batteries or same kind of batteries in different state of charges (SOCs) by CC/CV mode independently with the even degree of tight regulation, thereby satisfying the ripple requirements for each battery.

  • PDF

The Steady State Characteristics of the Push-Pull Current-fed DC-to-DC Converter with Multiple Outputs (다출력 전류환류형 DC-CD 컨버터의 정상특성)

  • 김희준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.536-541
    • /
    • 1988
  • The push-pull current-fed DC-to-DC converter has only one energy storage reactor in series with the input for any number of outputs. It is considered that this property of the converter has considerable advantages over other multiple-output circuits. The steady state characteristics of the converter with two outputs is analyzed. It is known that the voltage difference between the two outputs appears by existing the 2nd winding resistance of transformer and there is a region of the duty ratio in which the voltage difference of the converter is smaller than that of the forward converter.

  • PDF

Load-Balance-Independent High Efficiency Single-Inductor Multiple-Output (SIMO) DC-DC Converters

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.300-312
    • /
    • 2014
  • A single-inductor multiple-output (SIMO) DC-DC converter providing buck and boost outputs with a new switching sequence is presented. In the proposed switching sequence, which does not require any additional blocks, input energy is delivered to outputs continuously by flowing current through the inductor, which leads to high conversion efficiency regardless of the balance between the buck and boost output loads. Furthermore, instead of multiple output loop compensation, only the freewheeling current feedback loop is compensated, which minimizes the number of off-chip components and nullifies the need for the equivalent series resistance (ESR) of the output capacitor for loop compensation. Therefore, power conversion efficiency and output voltage ripples can be improved and minimized, respectively. Implemented in a 0.35-${\mu}m$ CMOS, the proposed SIMO DC-DC converter achieves high conversion efficiency regardless of the load balance between the two outputs with maximum efficiency reaching up to 82% under heavy loads.

A Two-Stage Detection Scheme Based on Combining Multiple Correlator Outputs for UWB Signal Acquisition (UWB 신호 획득에 알맞은 여러 상관기 출력값 결합 기반의 2단계 검파 기법)

  • Chong, Da-Hae;Lee, Young-Po;Kang, Seung-Goo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.395-400
    • /
    • 2010
  • This paper proposes a novel two-stage detection scheme based on combining multiple correlator outputs to enhance the detection performance in ultra-wideband (UWB) signal acquisition. Due to the rich multipath of UWB channels, the signal energy spreads over multiple correlator outputs, which makes each correlator output have only a portion of the signal energy, and thus, degrades the detection performance of the conventional scheme where a single correlator output is used as the decision variable for detection. In the proposed two-stage detection scheme, the decision variable is formed by combining multiple correlator outputs, making it possible to collect the signal energy spread by the multipath. Simulation results show that the proposed scheme can provide a better detection performance over the conventional scheme in various UWB channel environments.

A Data Envelopment Analysis Model for Evaluation of Efficiency of Deep-Sea Fishing Industry (원양어업의 효율성 평가를 위한 자료포락 분석 모형)

  • Kim, Jae-Hee;Choi, Kang-Deuk;Kim, Soo-Kwan
    • The Journal of Fisheries Business Administration
    • /
    • v.39 no.3
    • /
    • pp.49-65
    • /
    • 2008
  • In Korea, deep-sea fishing industry is faced with pressure of being thrown out of business, because of the upcoming unfavorable business conditions such as the fishing regulation of coastal countries, Korea-US Free Trade Agreement(KORUS FTA), and the other socio-economic changes. Hence, we present an evaluation of future business competitive for the deep-sea fishing industry so that the government can develop a concession plan for the deep-sea fishing industry by utilizing the results of this study. In efficiency analysis of deep-sea fishing industry, the decision maker may have two problems: (1) how to deal with multiple inputs and outputs of deep-sea fishing industry and (2) how to assign the weights on different inputs and outputs, In this paper, we proposed to use Data Envelopment Analysis (DEA) to estimate efficiency of deep-sea fishing industry with multiple inputs and outputs. In the DEA, The direct impact of KORUS FTA, fishing regulation of coastal countries, fishing charges, and competitive fishing conditions were used as input parameters while the profitability and secured fishing quarters, as outputs. The results of DEA-BCC model indicate that 6 out of 12 DUMs have better efficiency under variable return to scale assumption.

  • PDF

Soft Switching Multiple Output Charger By Using Novel Time Division Multiple Control Technique (새로운 시분할 다중 제어 기법을 이용한 소프트 스위칭 다중 출력 충전기)

  • Tran, Van-Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.191-192
    • /
    • 2014
  • Multiple output converters (MOCs) are widely used for applications which require various levels of the output voltages due to their benefits in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied for the multiple output battery charger based on the phase shift full bridge topology to charge a multiple number of batteries at one time. The proposed converter can charge three different kinds of batteries or same kind of batteries in different state of charges (SOCs) by using constant current/constant voltage (CC/CV) charge mode independently. At the same time it can provide an even degree of tight regulation for each output to satisfy the strict ripple requirement of the battery. The validity and feasibility of the proposed method are verified through the experiments.

  • PDF

A Highly Power-Efficient Single-Inductor Multiple-Outputs (SIMO) DC-DC Converter with Gate Charge Sharing Method

  • Nam, Ki-Soo;Seo, Whan-Seok;Ahn, Hyun-A;Jung, Young-Ho;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.549-556
    • /
    • 2014
  • This paper proposes a highly power-efficient single-inductor multiple-outputs (SIMO) DC-DC converter with a gate charge sharing method in which gate charges of output switches are shared to improve the power efficiency and to reduce the switching power loss. The proposed converter was fabricated by using a $0.18{\mu}m$ CMOS process technology with high voltage devices of 5 V. The input voltage range of the converter is from 2.8 V to 4.2 V, which is based on a single cell lithium-ion battery, and the output voltages are 1.0 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V. Using the proposed gate charge sharing method, the maximum power efficiency is measured to be 87.2% at the total output current of 450 mA. The measured power efficiency improved by 2.1% compared with that of the SIMO DC-DC converter without the proposed gate charge sharing method.

Combining Multiple Corre1ator Outputs-Based UWB Signal Detection Scheme for Cognitive Radio Communication Systems (인지 무선 통신 시스템을 위한 다중 상관기 출력값 결합 기반 UWB 신호 검파 기법)

  • Lee, Young-Po;Park, Jong-In;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.475-480
    • /
    • 2011
  • Ultra-wideband (UWB) signal energy spreads over multiple correlator outputs due to rich multipaths, making the output of each correlator have only a small portion of the total energy. Thus, in the proposed two-stage UWB signal detection scheme for cognitive radio communication systems, the decision variable is formed by combining multiple correlator outputs, making it possible to collect the signal energy spread by the multipaths, Simulation results show that the proposed scheme can provide a gain of about 0.6 dB over the conventional schemes in various UWB channel environments.

A New LLC Resonant Converter with Multiple Outputs for High Efficiency and Low Cost PDP Power Module

  • Kim, Chong-Eun;Yi, Kang-Hyun;Moon, Gun-Woo;Lee, Buem-Joo;Kim, Sang-Man
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.439-441
    • /
    • 2005
  • A new LLC resonant converter with multiple outputs is proposed for high efficiency and low cost plasma display panel (PDP) power module. In the proposed converter, ZVS turn-on of the primary MOSFETs and ZCS nun-off of the secondary diodes are guaranteed in the overall input voltage and output load range. Moreover, the primary MOSFETs and the secondary diodes have low voltage stresses clamped to input and the output voltage, respectively. Therefore, the proposed converter shows the high efficiency due to the minimized switching and conduction losses. In addition, by employing the transformer, which has the two and more secondary side, the proposed converter can have multiple outputs and they show the great cross-regulation characteristics. As a result, the proposed converter can be implemented with low cost and compact size. The 500W prototype is implemented, which integrates the sustaining and addressing power supplies of PDP power module. The maximum efficiency is 96.8% and the respective output voltages are well regulated. Therefore, the proposed converter is suitable for high efficiency and low cost PDP power module.

  • PDF

Efficient Implementation of a Pseudorandom Sequence Generator for High-Speed Data Communications

  • Hwang, Soo-Yun;Park, Gi-Yoon;Kim, Dae-Ho;Jhang, Kyoung-Son
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.222-229
    • /
    • 2010
  • A conventional pseudorandom sequence generator creates only 1 bit of data per clock cycle. Therefore, it may cause a delay in data communications. In this paper, we propose an efficient implementation method for a pseudorandom sequence generator with parallel outputs. By virtue of the simple matrix multiplications, we derive a well-organized recursive formula and realize a pseudorandom sequence generator with multiple outputs. Experimental results show that, although the total area of the proposed scheme is 3% to 13% larger than that of the existing scheme, our parallel architecture improves the throughput by 2, 4, and 6 times compared with the existing scheme based on a single output. In addition, we apply our approach to a $2{\times}2$ multiple input/multiple output (MIMO) detector targeting the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) system. Therefore, the throughput of the MIMO detector is significantly enhanced by parallel processing of data communications.